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2. 

T H E R M A L  C O N T A C T  R E S I S T A N C E  

Borivo j e Budimira Mikic 
and 

Warren M a x  Rohsenow 

A B S T R A C T  

This work dea l s  with phenomena of thermal r e s i s t a n c e  f o r  m e t a l -  
l i c  sur faces  i n  contact .  The main concern of t h e  work is t o  develop 
r e l i a b l e  and p r a c t i c a l  methods fo r  pred ic t ion  of t h e  thermal contact  
r e s i s t a n c e  f o r  var ious  types of sur face  characteristics under d i f -  
f e r e n t  conditions.  I n  pa r t i cu la r ,  considerat ion is r e s t r i c t e d  t o  
t h e  following cases: (i) rough nominally f l a t  sur faces  i n  a vacuum 
environment; (ii) rough nominally f l a t  sur faces  i n  a f l u i d  environ- 
m e n t ;  (iii) smooth wavy sur faces  i n  a vacuum environment (with 
e i t h e r  of t h e  following th ree  types  of waviness involved; sphe r i ca l  
waviness, c y l i n d r i c a l  waviness i n  one d i r e c t i o n  and c y l i n d r i c a l  
waviness i n  two perpendicular d i r ec t ions )  and ( i v )  rough wavy sur- 
f aces  i n  a vacuum environment. 

The problem is  divided i n t o  th ree  pa r t s :  thermal ana lys i s ,  
sur face  ana lys i s  and deformation ana lys i s .  

The thermal ana lys i s ,  based upon t h e  proposed models, inves- 
t i g a t e s  t h e  a n a l y t i c a l  so lu t ions  f o r  t h e  thermal contact  conductance 
under s teady state conditions.  
extensive a n a l y t i c a l  work connected with var ious  models and d i f f e r e n t  
methods used here,  t o  present a l l  d e t a i l s  of t he  thermal ana lys i s  
separa te ly  i n  t h e  appendices. 

It w a s  found convenient, due t o  t h e  

The sur face  ana lys i s ,  t r ea t ing  the  sur faces  as random processes 
with Gaussian d i s t r i b u t i o n  of height ,  r e l a t e s  t h e  i n t e r f a c e  geometry 
t o  t h e  actual contact  area. The method suggested i n  t h i s  ana lys i s  
has been checked aga ins t  some autoradiographical experimental data.  

The deformation ana lys i s ,  i n  i ts  two p a r t s ,  g ives  dependence 
between t h e  load supported by the  i n t e r f a c e  and (i) the  a c t u a l  con- 
tact a rea  and (ii) t h e  contact  spots  d i s t r i b u t i o n  for rough spheri-  
c a l l y  wavy sur faces ,  respect ively.  The r e s u l t  of t h e  f i r s t  p a r t  of 
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t h e  analysis is based on t h e  p l a s t i c  deformation of t h e  sur face  
a s p e r i t i e s .  The second pa r t  considers,  through t h e  model of t he  
equivalent contour area, the  combined e f f e c t  of spher ica l  waviness 
and roughness on t h e  problem of contact  spo t s  spreading a t  the  
in te r face .  

Limitations and poss ib le  devia t ions  of t h e  proposed models 
are discussed. 

Predic t ion  of t he  thermal contact  conductance is  compared 
w i t h  experimental da t a  obtained i n  t h i s  work ( i n  a vacuum environ- 
ment) together  with some d a t a  obtained by other  i nves t iga to r s  (for 
which necessary sur face  parameters were ava i l ab le ) .  Agreement 
between the  measured and predicted values  was good i n  t h e  whole 
t e s t ed  range of system variables .  
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NOMENCLATURE 

radius  of contact spot 

half  t h e  width of contour s t r i p  

projected area 

rad ius  of heat channel 

half  the width of the  hea t  channel 

half  t he  length of t h e  hea t  channel 

half the  length of contour area 

f l a t n e s s  deviat ion 

diameter of contour area 

modulus of e l a s t i c i t y  

microhardness 

contact conductance 

i,,Jn,Kn Bessel functions of order n 

k thermal conductivity 

1 length of specimen 

L wave p i t ch  

n 

P apparent pressure 

Q 

r r a d i a l  coordinate 

R r e s i s t ance  

R rad ius  of curvature 

T temperature 

Y 

Y 

number of contacts  per un i t  area 

t o t a l  heat flux rate per c'nannei 

y i e ld  stress 

dis tance  between mean planes of contacting surfaces 

0 



10. 

Cartesian coordinates 

eigenvalue 

mean height of i n t e r f a c e  gap 

a /b  

mean of absolu te  value of s lope  

D/L Eq. (4.3) 

f a c t o r  Eq. (2.17) 

roo t  mean square roughness 

roo t  mean square s lope  

r e s i s t ance  f a c t o r  Eq. (2.14) 

resistance f a c t o r  Eq. (2.19) 

Subscr ipts  

192 metals 1 and 2 respec t ive ly ,  i n  contac t  

a apparent 

C contact 

conr contour 

f void f l u i d  

8 
2klk2 

kl+k2 
combination of 1 and 2 as i n  ks = - 

t to ta l  
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I INTRODUCTION 

1.1 H i s t o r i c a l  Background 

For a long time it has been widely recognized t h a t  t h e  calcula- 

t i o n  of heat  f l u x  through metallic j o i n t s  formed by two bodies i n  

contact ,  cannot be ca r r i ed  out  i n  terms of t h e  ind iv idua l  r e s i s t ances  

of t he  bodies a lone,  by neglecting the  temperature drop occuring i n  

the  region of t he  in te r face .  

f l ux ,  any predic t ion  based on r e l a t i o n s  which do not include t h e  

i n t e r f a c e  e f f e c t  would be unrel iable .  Consequently, when t h e  pro- 

blem of high heat f l ux  arose i n  connection with the  development of 

nuclear  r eac to r s ,  the  necessi ty  f o r  b e t t e r  understanding of t he  

phenomena of i n t e r f a c e  thermal r e s i s t ance  between two metals i n  

contact  - i n  t h i s  case between f u e l  elements and t h e i r  metalclading - 
r e su l t ed  i n  a s u b s t a n t i a l  number of works r e l a t ed  t o  these  problems. 

With the  development of t he  spacecraf t  industry,  where the  knowledge 

of the  i n t e r f a c e  resistance has been of even more importance f o r  

successfu l  design of environmental cont ro l  subsystems and energy 

conversion devices,  t he  research i n  t h i s  area got f u r t h e r  impulse, 

so t h a t  today w e  have a r e l a t i v e l y  extensive experimental, and in 

a somewhat lesser degree, t heo re t i ca l  work ava i lab le .  Although 

+_he n,ctecr+_hy ~ q o _ r ~ m ~ t _ ~ l  -rk_ rca_lly gt_gyted q d t e  r ~ r e n t l y  

(about f i f t e e n  years  ago) when the  i n t e r e s t  i n  t h i s  f i e l d  became 

pronounced, it would be incorrect  t o  conclude t h a t  t he  t h e o r e t i c a l  

work was  not much older ;  ac tua l ly  i t  s t a r t e d  as e a r l y  as 1873 by one 

of t h e  bes t  t h e o r e t i c a l  t r e a t i s e  on t h e  subjec t  [34]. 

Especially i n  t h e  case of high heat  

. 



The most significant publications related 

in the bibliography, and a very good review of 

be found in references [4], [ 5 ] ,  [ 8 ]  and [281. 

12. 

to this area are listed 

those publications can 

Some investigators, 

[l], [31,  [51, [ 6 ] ,  [7 ]  and [8] treated the problem analytically con- 

sidering certain special cases. 

This work, as a natural continuation of what has been done thus 

far, will represent an effort in the direction of obtaining more 

general knowledge relevant to the field of interface resistance. 

Our attention will be concentrated on the separate investigation of 

rough non-wavy surfaces, smooth wavy surfaces (with three different 

types of waviness), rough and wavy surfaces, all in a vacuum 

environment and rough non-wavy surfaces in a fluid environment. 

1.2 Definition of Contact Conductance 

In future we will use the term of thermal contact conductance 

which is defined by the following relation: 

a/A 
= AT 

where Q/A represents the heat flux per unit area and AT the tempera- 

ture difference at the interface, interpreted, for steady state heat 

flow, as a difference between the respective interface temperatures 

which can be obtained by extrapolating the corresponding temperature 

profiles occurring far away from the contact surface(Fig: la). 

The term thermal contact resistance, when used, will represent 

the reciprocal value of the contact conductance. 

Turning now to the mechanism of contact resistance, we will 

consider two surfaces pressed together under condition of steady 

state heat flow. We may first conclude that the intimate contact 
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occurs only a t  a d i s c r e t e  number of loca t ions ;  furthermore, those  loca- 

t i o n s  - which w e  w i l l  ca l l  contact s p o t s  - can be d i s t r i b u t e d  uniformly 

or randomly or i n  some other  p a r t i c u l a r  manner over t h e  contac t  sur face ,  

depending on t h e  state of t h e  sur face  and t h e  na tu re  of t h e  load. W e  

w i l l  i n v e s t i g a t e  (Fig:lb) t h e  case when t h e  contac t  s p o t s  are confined 

i n s i d e  contour areas which i n  turn could have t h e i r  own d i s t r i b u t i o n  

pa t t e rn .  For a given load (normal t o  t h e  sur face  of contac t )  and t h e  

given materials of he bodies i n  con tac t ,  t h e  d i s t r i b u t i o n  of t h e  con- 

tact spo t s ,  t h e  shape of t h e  contour areas and t h e i r  d i s t r i b u t i o n  

depend on t h e  p rope r t i e s  of t h e  su r faces  as roughness and waviness. 

The lat ter mainly, although not exc lus ive ly ,  determines t h e  shape of 

t h e  contour area and the  former t h e  contac t  spo t s  d i s t r i b u t i o n .  I n  

t h e  case when t h e  contour area is equal t o  t h e  apparent area, i.e. 

when t h e  contac t  s p o t s  are d i s t r i b u t e d  over t h e  whole area, w e  w i l l  

say  that w e  are dea l ing  with nominally f l a t  (or non-wavy)surfaces. 

The hea t  ac ross  t h e  in t e r f ace  genera l ly  can be t r ans fe r r ed  by 

conduction through a f l u i d ,  which might be present i n  gaps, by 

r a d i a t i o n  and by conduction through t h e  contact spots.  When t h e  

i n t e r f a c e  is i n  a vacuum environment, only t h e  las t  two modes 

v i l l  cs=ltrihzSOI ip, h-t trzEsissinn-  

We w i l l  restrict our i n t e r e s t  primarily t o  t h e  cases when t h e  

i n t e r f a c e  is i n  a vacuum under conditions of neg l ig ib l e  r ad ia t ion .  

Some t h e o r e t i c a l  work w i l l  be devoted a l s o  t o  t h e  thermal contact 

conductance when a f l u i d  is present i n  the  gaps. 
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11 THERMAL ANALYSIS 

2.1 Models 

In order to solve analytically the problem of heat conduction 

through the interface of two metals in contact, the following models 

are adopted. 

It is taken that all contacts are uniformly distributed inside 

the contour area and furthermore that all contact spots have the same 

area of contact, circular in shape whose radius is denoted by a. 

From the above it readily follows that inside the contour area 

there exist a number of identical heat channels in the form of hexagonal 

cylinders. In addition, for the contact in a vacuum, the contacting 

surface for each heat channel is considered to be flat; the last 

assumption can be justified by the fact that surface irregularities 

usually have a very small slope. 

channel is given in Fig: 2a. 

above, we do not want to imply that all the heat passing through con- 

tact spots under all circumstances flows in the pattern described 

by our model. 

One half of the elemental heat 

By defining the elemental heat channel 

For contact in a fluid environment the model for a typical heat 

channel is given in Fig: 3a,where R = 61 + 6, is to be interpreted as 

the mean distance between surfaces in contact such that II (b2 - a2) 6 
represents the actual void volume for a heat channel;(bistands for 

the radius of the typical heat channel). 

The shape of the contour area, specified by the type of surface 

waviness, is assumed to be (i) circular for type of spherical wavi- 

ness (Fig: Ib), (ii) in form of a strip for cylindrical waviness in 

Y 
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one d i r e c t i o n  only (Fig: 2b) and (iii) i n  form of a rec tangle  f o r  

c y l i n d r i c a l  waviness i n  tvo p r inc ipa l  d i r e c t i o n s  (Fig: 2c). 

F ina l ly ,  i t  is assumed that t h e  su r faces  i n  contac t  are f r e e  

from any kind of f i l m  and consequently, t h e  whole problem of t h e  ther-  

m a l  contact  resistance is t r ea t ed  as t h e  c o n s t r i c t i o n  phenomenon only,  

i.e. as t h e  effect of cons t r i c t ion  of hea t  flow i n  the  region of contact .  

2.2 Analytic Solut ion f o r  an Elemental Heat Channel i n  a Vacuum 
Environmmt 

For the  model presented in Fig: 2a which w i l l  be considered l i k e  

a semi- inf in i te  cy l inder ,  t h e  temperature d i s t r i b u t i o n  and i m p l i c i t l y  

t h e  thermal contac t  r e s i s t ance  is spec i f ied  by t h e  Laplace d i f f e r e n t i a l  

equat ion ( for  s teady state conditions and thermal conduct ivi ty  

independent of temperature). 

V2T = 0 

and t h e  following boundary conditions:  

3 T = const a t  e = 0 ocrca 

a t  z = 0 a<rcb  aT - k-= 0 az 

at  r = b  aT - k-= 0 ar (2.4) 

at r - 0  (2.5) 
aT k - =  0 ar 

where Q is t h e  amount of heat  passing through our modelper u n i t  of 

time and k s tands  f o r  t he  conductivity of t h e  material of t h e  cyl inder .  

The s o l u t i o n  of the above problem is obtained and discussed i n  

d e t a i l  i n  Append- B. Summarizing here  b r i e f l y  t h e  r e s u l t s  of t h e  

Appendix, we w a n t  t o  emphasize several points .  The mixed boundary 
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conditions a t  z = 0 (2.2) (where over a p a r t  of t h e  area t h e  tempera- 

t u r e  d i s t r i b u t i o n  is  prescribed and over t h e  rest of t h e  area, t h e  

temperature gradient is given) d i d  not allow f o r  a d i r e c t  a n a l y t i c a l  

so lu t ion  of our problem. Ins tead ,  two d i f f e r e n t  i n d i r e c t  approaches 

are constructed,  based on t h e  known so lu t ion  €or t h e  case when 

b + - (or rather a j b  + 0): 
0 

r 
da T = & 1;- s i n  (aa) Jo ( a r )  y 

The der iva t ion  of (2.6) is presented i n  Appendix A. 

2.2.1 Method of Superposition 

I n  t h e  f i r s t  approach w e  considered t h e  temperature f i e l d  

obtained by superposit ion of an i n f i n i t e  number of sources equally 

spaced on t h e  su r face  a t  z = 0 (Fig: 4), where each source con t r i -  

bu t ion  on t h e  r e s u l t a n t  temperature f i e l d  is of t h e  form (2.6). 

I n  t h i s  manner t h e  expression f o r  t h e  thermal contac t  r e s i s t a n c e  

for a half of an  elemental heat channel w a s  found t o  be: 

-1 a 3 R I L(. 2nka 2 - s i n  (c) - (t) [l - (t)21112 - - 16 (% b [l - 

Where 92(E) is  presented i n  Fig: 5 .  

Expression (2.7) can be approximated by t h e  l i n e a r i z e d  form as 

1 n 
2nka 

which I s  a good approximation f o r  

9, (:) related t o (  1 . 8 )  is a l s o  given f o r  comparison i n  Fig: 5 .  

2.2.2 Al te rna t ive  Approach 

0 < a < Ob - b -  

The o ther  method presented in s e c t i o n  one of Appendix B u t i l i z e d  
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t he  f a c t  that from (2.6) follows: 

a t  z - 0 a<r 

a t  z - 0 o<r<a  - as w e l l  as T = const 

(See Appendix A (A.6a), (A.7a) and(A.7b)) 

From the  above it  follows that one may use (2.9) t o  approximate(2.2) 

taking the  temperature of t he  contact t o  be t h e  mean temperature over 

t h e  contact ing area. 

This procedure y i e l d s  t h e  expression for t h e  thermal contact 

resistance i n  t h e  form 

2 sin (ana) J1 (ana) 
R = - (t) C 

n=l  J (anb) 
0 

(2.10) 

where eigenvalues a can be obtained from the  r e l a t ion :  

J, (anb) = 0 (2.11) 

9i(f) is p lo t t ed  in Fig: 5. 

it 1s evicieni Z ~ G E  Pig: 5 - is ~ ~ e l l e ~ ~ t .  

2.2.3 Constant Heat Flux over t h e  Contact Area 

The agreement between the  two methods - as 

The case when the  condition of constant heat  f l ux  p reva i l s  over 

t h e  contact  area, has been considered f o r  two reasons: ( i )  s ince  

t h e  constant heat  f l u x  over t h e  contact  area imposes a higher cons- 

t r i c t i o n  of heat flow than the constant temperature condi t ion over 

t h e  same area, the  former should always y i e ld  t h e  higher thermal 

contact  r e s i s t ance  and could serve as an upper boundcheck for 
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our previous so lu t ions ;  and (ii) i n  c e r t a i n  cases, f o r  example i n  t h e  

case of macroscopic c o n s t r i c t i o n  due t o  t h e  waviness e f f e c t , t h e  con- 

d i t i o n  over t h e  contour area depends on t h e  contact spots  d b t r i b u t i o n  

i n s i d e  t h e  area and hence, t he  a c t u a l  s i t u a t i o n  over t he  contour 

area may approach t h a t  of t h e  constant heat f lux .  

The exact so lu t ion  f o r  t he  thermal contac t  r e s i s t a n c e  (see 

sec t ion  t h r e e  of Appendix B) f o r  t h i s  case, may be w r i t t e n  as 

- J: (ana) - -  - 4  
- I& 4)4 (;I 4 b  R = -  E 

Ika n=l  (anbI3 J (anb) 
0 

a is determinable from (2.11). 4)4(t) is  given i n  Fig: 5. n 

(2.12) 

2.2.4 Solution f o r  a F i n i t e  Length of thkMo&l- 

Since i n  practice t h e  length  of t h e  elemental heat channel is 

always f i n i t e ,  w e  realize t h a t  i t  is of some i n t e r e s t  t o  f ind :  

(i) t h e  value of t h e  minimum length  f o r  which t h e  r e l a t i o n s  given 

i n  the  previous sec t ions  are s t i l l  appl icable  and f u r t h e r  (ii) how 

t h e  thermal contact r e s i s t a n c e  w i l l  behave when t h e  length  is less 

than t h a t  value. For t h i s  reason i n  Appendix C,  s e c t i o n  one, t h i s  

problem spec i f ied  by r e l a t i o n  (2.1) with t h e  boundary condi t ions  

( 2.9), (2.4), (2.5) and 

T - const a t  z = E 

has been solved f o r  t he  thermal contac t  r e s i s t a n c e  (C.13). 

2 b  m sin(a,a) J1 (ana) 
R = - (6) E tanh (ana) -- 

nka a nu l  (anb)3 Jo2 ( a  b) n 

where a is again t h e  so lu t ion  of (2.11). The a l t e r n a t i v e  expression 

f o r  t h e  thermal contact r e s i s t a n c e  obtained by a method of super- 

pos i t i on ,  which is of some t h e o r e t i c a l  importance, is presented i n  

n 

(2.13) 
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s e c t i o n  t h r e e  of Appendix C. Also t h e  case of constant heat f l u x  over 

t h e  contact area has been t rea ted  i n  sec t ion  two of t h e  same Appendix. 

Comparison between (2.14) and (2.10) shows t h a t  t h e  inf luence  of 

t h e  f i n i t e  length  of t h e  elemental heat channel on t h e  contac t  

r e s i s t a n c e  is n e g l i g i b l e  for al l  va lues  of I > b. 

follows from t h e  f a c t  that t h e  lowest anb is(from (2.11)) 

and f o r  II > b 

This conclusion - 

a l b  = 3.8317 - 
I tanh (al%) - > tanh(ulb) = tanh 3.8317 = 0.999 

and f o r  a l l  o ther  values of %b i n  t h e  subsequent terms of t h e  series 

i n  (2.13), tanh(%II) w i l l  be still c lose r  t o  t h e  value of one. 

Another s i g n i f i c a n t  conclusion which follows from (2.14) is t h a t  

t h e  contact r e s i s t a n c e  w i l l  decrease with decreasing I and w i l l  have 

t h e  va lue  zero f o r  11 = 0. Of course, t h i s  is  a d i r e c t  consequence 

of t h e  imposed boundary condition: T = const a t  z = I and formally 

i t  says t h a t  t h e  mean temperature over t h e  whole sur face  z = 0 

approaches t h e  contact temperature as I approachesthe value of zero,  

which is nothing but t h e  statement of unique temperature; phys ica l ly  

i t  says t h a t  as I decreases f o r  I > b, t h e  de f l ec t ion  of flow l i n e s  

w i l l  be less pronounced (i.e. h e a t  f l u x  cont r ibu t ion  a t  z = I w i l l  

b e  highest  d i r e c t l y  opposite t h e  contac t  axea (ma2) and w i l l  decrease 

r ap id ly  with increasing r f o r  r>a) .  

I f  w e  had imposed t h e  constant heat f l u x  a t  z = II ( r a the r  than 

t h e  constant temperature) t h e  behavior of t h e  contact r e s i s t a n c e  with 

decreasing 11 would be q u i t e  the oppos i te  of t h e  one discussed above. 
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2.2.5 Application 

The expressions found in this chapter of the € o m  

do represent the contact resistance only for a half of the elemental 

heat channel. For the whole channel, it directly follows 

$(E) (2.14) 8 R = R1 + R, = - nksa 

where 

ks = - 2klk2 

kl+k2 

k and k are the respective conductivities of two bodies in contact. 

From the above one can obtain the thermal contact resistance 
1 2 

per unit area as 

(2.15) 

where n represents the number of contacts per unit area and may be 

connected to the geometry of the elemental heat channel by the relation 

1 n = -  
nb2 

Also 

is used as an abbreviation. 

a 
b +(E) for a given E = - can be found in Fig: 5 or in the linearized 

f o m  

f E  
$(E) = --- 16 4 
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2.3 Analytic Solut ion f o r  an Elemental H e a t  C h a n n e l  i n  a Fluid 
Environment 

The problem of an elemental  hea t  channel i n  a f l u i d  environment, 

based upon t h e  model given i n  Fig: 3a, has been considered in Appen- 

d i x  F. 

in t h e  Appendix and the r e s u l t  obtained by t h e  same procedure. 

In t h e  following we  w i l l  b r i e f l y  o u t l i n e  t h e  procedure used 

The temperature d i s t r i b u t i o n  f o r  t h i s  case is again determinable 

from relations (2,1),(243), (2.4), (2.5) and ( ins tead  (2.2)).  

1 T = Tc = const.  a t  2 = 0 o<r<a 

aT kf (Tc - T) a t  z = 0 a<r<b 1 -k1 a, = 7 (2.16) 

where + is equivalent  conductivity of t he  f l u i d  present  i n  the  i n t e r -  

f a c e  gaps, 

isothermal  plane spec i f i ed  by temperature Tco 

6 ,  s tands  f o r  t h e  m e a n  d i s t ance  between t h e  s o l i d  and t h e  

In order  t o  ob ta in  a so lu t ion  in closed form, t h e  body of revo- 

l u t i o n  which confines  t h e  amount of heat  passing through t h e  metallic 

con tac t ,  is approximated by t h e  cy l inder  of r ad ius  b, (see Fig: 3b). 

With t h i s  approximation, together with the  known so lu t ion  f o r  t h e  

cy l inde r  i n  a vacuum environment, t h e  expression f o r  t h e  contact  

conductance per  u n i t  area was o b i a h &  iii the 

where 

c-, . 
AULLU. 

k f - 
6 

bkf kf -.. 
6ks dk& 

(2.17) 
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and 6 - 6 ,  + C s 2  

2.4 Analytic Solution for the Contact Resistance due to the Various 
Types of Waviness 

2.4.1 Spherical Waviness 

The model for macroscopic heat channels in this case will be geo- 

metrically similar to the elemental heat channel given in Fig: 2a, 

and all expressions obtained for the latter are applicable here, pro- 

vided that instead of E = - , one uses D / ~ ;  D being the diameter of 

the contour area and L the wave length of the spherical waviness. 

a 
b 

So, from (2.15) it follows that the expression for the thermal con- 

tact resistance per unit of the apparent area due to the spherical 

waviness is: 

The values for + ( D / ~ )  for different L/D can be found in Fig: 5 

(formally taking D/L = a/b). 

2.4.2 Cylindrical Waviness in One Direction 

The analytical treatment of the heat flow through the macroscopic 

heat channel (Fig: 2b) where the contour area is of the form of a strip, 

is presented in Appendix D. 

follows . 
The main results of the Appendix are as 

For the case when the contour area is kept at a constant tempera- 

ture, the thermal contact resistance (for one half of the heat channel) 

was found to be: 

m 

1 b 1 a a - 
b kn n=l n2 

J, (nn 5) sin (nn -1 R x -  
(2.19) 

I 

(2.18) 

k 
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where $1 (2) is given i n  Fig: 6 .  

The thermal contact  res i s tance ,  when t h e  heat  f l u x  over t h e  con- 

tour  area is taken t o  be a constant,  can be expressed in t h e  form 

OD 

sin2 (nn t) R=-(;) E - 1 b 3  1 

kn n=l  n3 

- - ' 2 (  a/b) - 
k 

$2 (a/b) is presented i n  Fig: 6.  

(2.20) 

From t h e  above one can der ive t h e  re at ion f o r  t h e  thermal con- 

tact resistance due t o  t h e  cy l ind r i ca l  waviness per  u n i t  of t h e  

apparent area as 

c 

(2.21) 

2.4.3 Cyl indr ica l  Waviness i n  Two Perpendicular Direct ions 

The contact  r e s i s t ance  due t o  t h e  cy l ind r i ca l  waviness i n  two 

p r inc ipa l  d i r ec t ions  (based on the  model presented in Fig: 2c) has 

been considered i n  Appendix E only f o r  t h e  case of a constant heat  

f l u x  over t h e  contour area. The reason f o r  t h i s ,  together with the  

so lu t ion  is given i n  t h e  Appendix. The f i n a l  r e s u l t  f o r  t h e  contact 

r e s i s t ance  per  u n i t  or' the appareiit iirsa ~btafie:! there CZE he writ- 

t e n  as 

00 

c 
n=l  

00 Sin2(?) 8 i U 2 ( T )  mud 

c c  8b2c2 

ksu2a2d2 n=l mpl l  (F)2 + > 

(2.22) 

I 
J 

where a, b, c and d are introduced in  Fig: 2c. 
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111 SURFACE ANALYSIS 

From the conductance equation involving roughness e f f e c t  it is 

evident t h a t  t h e  knowledge of t he  number of contac ts  per u n i t  of t he  

contour area as w e l l  as t h e  r a t i o  between the  a c t u a l  area and the  

contact  area is  required f o r  pred ic t ion  of t he  contact  res i s tance .  

The u l t imate  goal  of t h i s  whole work is t o  relate the  thermal con- 

tact  r e s i s t ance  t o  the  apparent pressure through some sur face  

c h a r a c t e r i s t i c s  and proper t ies  of materials which can be e a s i l y  

obtained. 

The subject  of t h i s  chapter is  t o  f ind  dependence between the  

number of contacts  per u n i t  area E(square roo t  of area r a t i o )  as a 

function of geometrical parameters of sur faces ,  whereas t h e  r e l a t i o n  

between E and the  load w i l l  be discussed i n  t h e  next chapter.  

3.1 Description of the Surfaces 

For each of the  sur faces  forming an i n t e r f a c e  contac t ,  w e  assume 

the  existence of an ensemble of t he  sur face  p r o f i l e s ,  a l l  taken from 

one sur face ,  from which one can deduce s ta t is t ical  p rope r t i e s  of t he  

sur face ,  i.e. w e  assume t h a t  t h e r e  ex is t s  some p robab i l i t y  measures 

r e l a t ed  t o  the behavior of a l l  t h e  obtained p r o f i l e s .  As a conse- 

quence of t he  above, w e  can say t h a t  t he  sur face  p r o f i l e  y(x) (see 

Fig: 8a) is a random process which possesses a p robab i l i t y  dens i ty  

funct ion #(y) ,  where +(Y), f o r  example, is t h e  p robab i l i t y  t h a t  y = Y 

and the  quant i ty  p(Y) dy is  the  p robab i l i t y  of t h e  random va r i ab le  y 

having the  value between Y and Y + dy, i.e. 

t 

= P(Y) Y + 6) - +(y - E) 
26 

0' l i m  
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W e  w i l l  f u r t h e r  assume that t h e  random process y(x) is s t a t i o n a r y ,  

meaning t h a t  t h e  s ta t is t ical  proper t ies  of t h e  ensemble of sur face  

p r o f i l e s  are inva r i an t  under a r b i t r a r y  displacement i n  x d i rec t ion .  

I n  a d d i t i o n , i t  w i l l  be assumed that t h e  p robab i l i t y  dens i ty  of 

height and s lope  are independent (i.e. t h e  j o i n t  p robab i l i t y  f o r  height 

and s lope  may be wr i t t en  as p(y,y') = p(y) p(y')) and t h a t  t h e  su r face  

height is normally d i s t r i b u t e d ,  i.e. t h e  p robab i l i t y  dens i ty  func t ion  

f o r  t h e  sur face  height (measured from t h e  mean plane) is given as 

e-y2/ 2a2 
P(Y) - (3-1) 

U 4 Z  
where u r ep resen t s  t h e  standard devia t ion  f o r  height (or root  mean 

square deviation) spec i f ied  by t h e  r e l a t i o n  

F ina l ly ,  w e  w i l l  state t h a t  for our  purpose a sur face  under consider- 

a t i o n  is completely determined with t h e  known p robab i l i t y  dens i ty  

func t ion  for sur face  height p(y) together with t h e  p robab i l i t y  dens i ty  

func t ion  f o r  p r o f i l e  s lope  p(y')  (although, as it w i l l  be shown later,  

w e  w i l l  not need an e x p l i c i t  r e l a t i o n  f o r  p(y') but only t h e  mean 

va lue  a t  t h e  slope).  

3.2. --- Determination of NumberzcContacts per Unit A r e a  

Before s t a r t i n g  t o  work d i r e d y  on t h e  problem of determination 

of t h e  dens i ty  of contact spots  as a func t ion  of E and t h e  geometry 

of t h e  su r faces  i n  contac t ,  we recall t h e  following known r e l a t i o n  
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from theory of probabi l i ty  [40]: 

L e t  f (y)  be a function of a random s t a t iona ry  va r i ab le  y f o r  which 

probabi l i ty  den8ity d i s t r i b u t i o n  is  known, then the mean value of 

f (y )  over whole y d i s t r i b u t i o n  may be expressed as 

0 

I 

' 0  

o r  more general ly  

J -QD 

We re tu rn  now t o  random s t a t iona ry  d i s t r i b u t i o n  of t he  sur face  

height ,  which can b e  formally presented as an  a l l  representa t ive  

sur face  p r o f i l e  y(x) given i n  Fig:8a. 

y(x) f o r  a given surface,  where y is measured from t h e  mean l i n e  

of t he  p r o f i l e ,  we ask  t h e  question: what is t h e  expected number of 

peaks per  u n i t  length above a c e r t a i n  level Y? 

with a l l  representat ive p r o f i l e s ,  t he  a c t u a l  i n t e r p r e t a t i o n  of our 

question is: what is the  expected value of &, where n is  t h e  number 

of contac ts  per u n i t  area, when a rough nominally f l a t  sur face  is  

pressed t o  a smooth f l a t  sur face  which is  Y d i s t ance  a p a r t  from 

t h e  mean plane of t he  rough surface.  

Referring t o  t h e  p r o f i l e  

Since w e  are deal ing 

The above problem could be solved i n  more than one way. The 

method of counting funct ions suggested by Middleton E401 w i l l  be 

used here : 
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Let  U(T) be t h e  s t e p  funct ion with t h e  following p rope r t i e s  

Then u(y(x) - Y) has t h e  shape given i n  Fig: 8b. 

D i f f e ren t i a t ing  u(y-Y) one can obta in  t h e  counting funct ional  

where 6(y-Y) is known as u n i t  impulse o r  Dirac d e l t a ,  with property 

t o  vanish everywhere except at  y = Y and it  s a t i s f i e s  t he  r e l a t i o n  
OD 

from which follows 
OD 

r 
f (y )  ~(Y-Y) dy f (Y) (3  5 )  

and i f  f o r  a<x<b y(x)  assumes the value of Y once and only once, then 

y' S(y - Y) dx = + - 1 (3 6 )  1: 
where t h e  s ign  depends on t h e  sign of y'.  

du 
dx From t h e  above follows c l e a r l y  t h a t  - c o n s i s t s  of sp ikes  with 

u n i t  area d i r ec t ed  upward o r  downward, depending on whether y'  is 

positive o r  negarive {see Fig: 8cj .  Hence, r'ne counring funcrionai  

ly' I 6 (y-Y) can be used f o r  ca lcu la t ion  (by v i r t u e  of (3.6)) of num- 

be r  of peaks crossed per u n i t  lenghth of t h e  p r o f i l e  (or square root  

of t h e  n a b e r  of contac ts  per un i t  area) as 

-- 

& = E  /:iy'l ~(Y-Y) dx (3.7) 

Since  (3.7) is nothing but  one half  of t h e  mean va lue  of t h e  counting 

func t iona l ,  t h e  use of (3.3a) will y i e l d  
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or with (3.5) OD 

r 

(The above expression could be derived a l s o  by a somewhat d i f f e ren t  

approach developed by Rice, se [41], [43], [ 2 ] ) .  

W e  can see t h a t  t he  in t eg ra l  of (3.8) represents  t h e  mean of t he  

absolute value 

follows 

where 

tan@ 

Relation( 3.9) 

The value 

of the  p r o f i l e  slope,  and hence from (3.8) and (3.1) 

(3.10) 

is presented i n  Fig: 9. 
1 

of E - Ac l2 may be s imi la r ly  obtained. (Aa) 
From Fig: 8a it  is evident t ha t  E. can be expressed as 

fL 
E = 1 u(y-Y) dx L 

' 0  

and together with (3.3) and (3.1) 
c9 0 

(3.11) 
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Y The dependence E = f ( /u) is given in  Fig: 10. 

Since both - 2u 6 and E a r e  uniquely r e l a t e d  t o  '/a, there  exists a tane 
unique r e l a t i o n  

(3.12) 

Relat ion (3.12) is presented graphical ly  i n  Fig: 11. 

One can use t h e  information given by Fig: 11 t o  relate t h e  thermal 

contac t  conductance for nominally f l a t  sur faces  i n  contact t o  E i n  

t h e  form 

-- = u(a) kstan8 (3.13) 

Dependence (3.13) is given i n  Fig: 12. 

A l l  the  r e l a t i o n s  derived so far i n  t h i s  chapter  are based on 

t h e  inves t iga t ion  of t he  contact  between two nominally f l a t  sur faces  

wi th  t h e  add i t iona l  r e s t r i c t i o n  t h a t  one of t he  sur faces  must be 

smooth. 

case of two rough nominally f l a t  sur faces  i n  contact,we w i l l  modify 

t h e  d e f i n i t i o n s  of some parameters i n  t h e  developed formulas. 

In  order  t o  make the  obtained r e s u l t s  appl icable  for t h e  

Considering two rough surfaces  i n  contact ,  w i t h  t he  mean planes 

a t  d i s t ance  Y a p a r t  (again it was assumed that t h e  d i s t r i b u t i o n s  of 

he ight  f o r  both sur faces  are random, s t a t iona ry  and Gaussian), we  

r e a l i z e  t h a t  a t  any poin t ,  whenever y1 + y2z  Y,  t h e  contact  between 

t h e  sur faces  w i l l  occur (yl and y2 are measured from the  respec t ive  

mean l i n e ) .  Consequently, one may apply a l l  found r e l a t i o n s  by 

i n t e r p r e t i n g  y(x) i n  Fig: 8a as 

y(x) - y1 (XI + Y,(X) 

and Y as t h e  d i s t ance  between t h e  mean planes of t h e  sur faces  i n  con- 

tact. Standard devia t ion  f o r  d i s t r i b u t i o n  yl(x) + y , ( ~ ) ,  where both 



y (x) and y,(x) are normally d i s t r ibu ted ,  is  given as [44]. 1 
I 

(J = A; + a2 2 
(3.14) 

The value f o r  tan0 i n  t h i s  case depends on the  respec t ive  d i s t r i -  

butions of the s lope f o r  the  two p ro f i l e s .  

I f  both slopes ly' (x) I and l y r l  (x) I a r e  approximately constant ,  

simple probabi l i ty  ana lys i s  shows t h a t  

(3.15) 

where tanOi is the  l a rge r  of the  two slopes.  

t he  two Iy ' (x) I ' s  could have two d i f f e r e n t  values  (which can be t h e  

In  the  case when each of 

case for machined su r faces ) ,  t he  value of tan0 w i l l  s t i l l  approach 

the  one given by (3.15). 

I f  both slopes are normally d i s t r i b u t e d ,  i .e. i f  

where b is the standard devia t ion  from the  mean of t h e  s lope,  then 
00 L 

tan0 = I l y t l  + y V 2 l  dx = I ly ' lp(y ' )dy = CY 6 TI L 
0 - 0 0  

(3.16) 

The predict ion of number of contac ts  per  u n i t  area based on t h e  

method developed above w a s  compared with t h e  p red ic t ions  obtained 

from t h e  other  two ex i s t ing  methods, namely ( i )  from t h e  graphical  

method (which can be executed on analog computers [ 4 5 ] )  and ( i i )  from 

t h e  method developed by Henry [ 2 ] ,  which is  based on t h e  assumption 

of t he  random d i s t r i b u t i o n  of t h e  height  as w e l l  as t h e  slope. For 
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f i v e  p a i r s  of rough non-wavy surfaces ,  made of s t a i n l e s s  steel 304, 

comparison between the  th ree  methods, and some experimental autoradio- 

graphical  da t a  is presented i n  Figs: 13 t o  17. The predic t ions ,  except 

f o r  t he  method suggested here,  a s  w e l l  as t h e  experimental da t a ,  

were taken from [46]. 

t h e  l a r g e r  of t h e  two mean slopes of t he  contact ing sur faces  (which 

w a s  j u s t i f i e d  by t h e  behavior of t h e  p r o f i l e s  s lopes) .  

t h r e e  methods E w a s  r e l a t e d  t o  the apparent pressure with t h e  depen- 

dence: = where H is  microhardness (Vickers o r  h o o p ) .  The 

conversion from E t o  pressure was done i n  order t o  enable t h e  com- 

parison with the  experimental data. 

t h e  th ree  methods, of course, does not  depend on the  v a l i d i t y  of t h e  

assumed dependence between E and pressure ( s ince  i n  t h e i r  o r i g i n a l  

form t h e  methods relate t h e  number of contac ts  t o  E). 

The value f o r  tan0 in(3.12) w a s  taken t o  be 

I n  a l l  t h e  

” 

The r e l a t i v e  agreement between 



I V  DEFORMATION ANALYSIS 

The objec t ive  of t h i s  chapter is t o  give the  f i n a l  l i n k  between 
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the  thermal contact conductance and the  apparent pressure. I n  the  

obtained r e l a t ions  i n  the  previous chapters ,  the  contact  conductance 

has been expressed i n  terms of E = (- A' ) I h ,  t h e  contour a rea  and Aconr 

the  wavelength, through some sur face  c h a r a c t e r i s t i c s  and proper t ies  

of the  mater ia l s  i n  contact .  I n  the following w e  w i l l  at tempt,  i n  

the  two separate  sec t ions ,  t o  r e l a t e  E to t h e  pressure over the  

contour area and t o  determine the  contour area as a function of t h e  

apparent pressure f o r  the  case of rough spher ica l ly  wavy surfaces .  

4 . 1  Actual Contact Area 

In  Appendix H w e  have ca r r i ed  o u t =  ana lys i s  with the  purpose 

of es t imat ing the  real contact  area when two rough non-wavy sur faces  

are brought i n to  contact .  The ana lys i s  i s  e s s e n t i a l l y  constructed 

on a model which assumes t h a t  each contact  po in t  c o n s i s t s  of two 

hemispherical a s p e r i t i e s  i n  symetric contact  (Fig:19a) 

The r e s u l t  of the  ana lys i s  can be expressed by t h e  following 

equation 

where y i s  a function of t h e  material p rope r t i e s  of t h e  contact ing 

bodies, the  pressure and t h e  geometry of t h e  sur faces  i n  contact .  

For the  geometry of the metallic sur faces  we considered here  (tanO>O.l) 

and t h e  range of pressure w e  used ( ~ 1 1 3 0  p s i ) ,  i t  is found t h a t  t he  

value of y w a s  very c lose  t o  uni ty ,  and the re fo re  it I s  permissible  

- 

t o  use t h e  r e l a t i o n  
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The expression (4.1) agrees with t h e  conclusions achieved by some 

other  i nves t iga to r s  (1471, [ lo ] )  

From (4.1) it follows 

~ 2 s s - a s -  Ac Aa E,-- P conr 
Aconr Aconr H H (4. la)  

One may now use(  4.la) and (3.13) t o  express t h e  thermal contact  

conductance f o r  t h e  case of rough nominally f l a t  sur faces  i n  contact  

(Aa = Aconr) t o  t h e  apparent pressure. 

g raphica l ly  i n  Fig: 18. 

The r e s u l t  is presented 

The same dependence can be expressed a n a l y t i c a l l y  as 

ah I 0.9 (Pj6/17 
kstanO H (4.2) 

4 .2  

t h e  

Contour Area f o r  Spherical ly  Wavy Surfaces i n  Contact 

The model f o r  spher ica l  waviness, where only t h e  mean l i n e  of 

sur face  is presented, is given i n  Fig: 19b. W e  assume t h a t  t he  

waviness is  not  too  pronounced, i.e. ( r e f e r r i n g  t o  Fig: 19b) d /L<<l .  

As a consequence of t h e  above, t he  rad ius  of curvature  is expressed 

W e  w i l l  ca l l  t h e  d i s t ance  d the  f l a t n e s s  devia t ion  and L the  wavelength. 

For two such specimens i n  contact with the  type of waviness described 

above, one can determine, by applying t h e  Hertz theory [481, how the  

contour area ( f o r  smooth surfaces) v a r i e s  with the  load exerted be- 

tween the  contact ing members. The f i n a l  r e s u l t  may be wr i t t en  i n  t h e  

form 
D l / 3  

5 - L 1.285 'H L (4 3) 

D being t h e  r ad ius  of the  contour area 

d, dl  + d, 
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E,--’ = - E1 and E2 are respective moduli of e l a s t i c i t y  f o r  
El+E2 

t h e  materials i n  contact.  

I f  t he  surfaces  i n  contact  are i n  addi t ion  rough, one can an t i -  

c i p a t e  t h a t  t h e  contour area w i l l  be l a r g e r  than predicted by the  

Hertz theory. Also i n  t h i s  case, the  e f f e c t  of nonuniform d i s t r i b u t i o n  

of t he  contacts  w i l l  be present with the  consequence t h a t  t he  dens i ty  

of t he  contact spo t s  a t  the  in t e r f ace  w i l l  decrease with increasing 

radius .  I n  order to  make the  r e l a t i o n s ,  based on t h e  model which 

assumes uniform d i s t r i b u t i o n  of contac ts  i n s ide  the  contour area, use- 

f u l ,  w e  def ine here  the  e f f e c t i v e  contour area t o  be t h e  area which 

would contain a l l  the  contact  spots  i f  they had been uniformly d i s t r i -  

buted in s ide  t h i s  area. 

assumption tha t  t he  mean sur face  would be deformed e l a s t i c a l l y  

according t o  the Hertz theory,  the  problem w a s  inves t iga ted  i n  

Appendix H. The following r e s u l t ,  which s p e c i f i e s  t h e  diameter of 

t h e  e f f e c t i v e  contour area w a s  obtained. 

Using t h e  d e f i n i t i o n  given above, and the  

where 

2r and X = y XeffE y- 

t he  waviness fac tor  g(’/AH) is presented a l s o  graphica l ly  i n  Fig: 20. 

c 

Since (Y/u) i n  ( 4 . 3 )  is the  funct ion of c(si)e Fig: 10) where 6 is 
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(4.4a) 

i t  is obvious t h a t  t h e  process of ca lcu la t ing  Xeff is  an  i t e r a t i v e  

process. However, from known AH and some l imi ted  experience, one can 

make good es t imat ion  of Y/a i n  t he  f i r s t  s t e p  so that only one evalua- 

t i o n  of X e f f  might be necessary. 

4.3 Application 

W e  w i l l  conclude t h i s  chapter by ou t l in ing  t h e  procedure for 

t h e  pred ic t ion  of t h e  thermal contact r e s i s t ance  f o r  two rough and 

sphe r i ca l ly  wavy sur faces  i n  a vacuum environment. 

From (2.15) and (2.18) follows 

where t h e  f i r s t  term i n  (4.5) is t h e  r e s i s t a n c e  imposed by t h e  rough- 

nes s  due t o  t h e  amount of heat which might follow t h e  p a t t e r n  of t h e  

model for t h e  elemental hea t  channel, and t h e  second term represents  

t h e  cont r ibu t ion  due t o  t h e  sphe r i ca l  waviness. 

i’ From t h e  known parameters of t h e  su r faces  i n  contact (ui,tan@ 

d,L) as w e l l  as t h e  p rope r t i e s  of t h e  materials (Ki,Ei,Hi) one can 

u s e  Eq. (4;s) t o  ob ta in  A e f f ,  Eq. (4.4) f o r  E, Fig:)l f o r  determining 

& and Fig: 5 t o  eva lua te  I$(€) and $(Aeff). A l l  t h i s ,  together with 

(4.5) w i l l  enable t h e  pred ic t ion  for t h e  thermal contact res i s tance .  

In t h e  case of nominally f l a t  su r f aces  i n  contac t ,  t h e  p red ic t ion  

c a n - b e  made d i r e c t l y  from Eq. 4.2 (or Fig: 18) 
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V EXPERIMENTAL DETERMINATION OF CONTACT RESISTANCE 

5.1 Apparatus 

The apparatus shown i n  Fig: 21 cons i s t s  of a s t r u c t u r e  f o r  support 

and loading, the test chamber, a vacuum system and an instrument console. 

The lever system w a s  designed t o  g ive  mechanical advantage of 

100. Dead weight loading is made t o  be independent of thermal s t r a i n s .  

The load is  measured by a s t r a i n  gauge dynamometer, located i n  t h e  

t e s t  chamber and hence, t he  hys t e re s i s  e f f e c t  due t o  bearing 

f r i c t i o n  did not inf luence the  accura te  reading of the  load. 

The load i n  the  test sec t ion  may range from 0 - 20.000 pounds 

when t h e  pressure i n  the  test chamber is a t  one atmosphere. However, 

for a vacuum condition i n  t h e  test chamber, t he  minimum load on t h e  

test sec t ion  is 103 pounds (or 131 p.s.i.  over t h e  one-inch diameter 

specimens' in te r face) .  This is caused by t h e  atmospheric pressure 

ac t ing  on t h e  3-inch diameter bellows, through which the  load is 

t ransmit ted t o  t h e  test  sec t ion .  The cross-section of the  test 

chamber is given i n  Fig: 22. 

The chamber cons i s t s  of a top p l a t e ,  a base p l a t e ,  an upper 

cyl inder  and a lower cy l inder  which can be lowered t o  expose t h e  

test sect ion. 

Referring t o  Fig: 22, t h e  test  sec t ion  c o n s i s t s  of t h e  upper and 

lower main coolers  (4,19),  spacers  (5,6,17) t h e  upper and lower main 

hea te r s  (7 and 8 respec t ive ly)  t h e  specimens (8,9) ,  t h e  dynamometer 

(18) and t h e  guard r ing  with i t s  upper and lower h e a t e r s  (12,131, and 

upper and lower coolers  (11,141. 

The test sec t ion  design allows f o r  hea t  f low through t h e  in t e r -  

f ace  t o  be reversed. The hea t ing  elements are made from Kanthal 
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r e s i s t ance  w i r e .  The heater  cores are one-inch diameter s t a i n l e s s  

steei. 

The temperature is measured by 28-guage chromel-alumel thermo- 

couples cemented by m e a n s  of Sauereisen. 

i n se r t ed  i n t o  each specimen, spaced 318 of an inch apa r t  along t h e  

cen te r l ine ,  beginning 218 of an inch from t h e  t e s t ed  in te r face .  

A Leeds and Northrup potentiometer, with t h e  accuracy of 0.005 

m i l l i v o l t s  (corresponding t o  0.25OF) w a s  used f o r  measuring e .m. t .  

produced by t h e  thermocouples. 

Four thermocouples are 

The load a t  t h e  i n t e r f a c e  is measured by the  dynamometer 

made of 1.5 inch diameter 2 inch long aluminum cyl inder  with semi- 

conductor s t r a i n  gauges attached near  t h e  base of t h e  cyl inder .  

The dynamometer w a s  a b l e  to  record the  change of t h e  load from one 

pound (at t h e  bas ic  s e n s i t i v i t y  t h e  load of one pound produced d is -  

placement on t h e  Sanborn recorder of one millimeter). 

The guard r ing  with i t s  two coolers  and two hea ters  is used 

to  minimize t h e  r ad ia t ion  e f f e c t  on t h e  specimens. 

ad jus t ing  t h e  temperature gradient i n  t h e  guard r ing  t o  be approxi- 

mately t h e  same as the  temperature gradient  i n  t h e  two specimens. 

The temperature gradient  i n  t h e  guard r ing  is measured by the three 

thermocouples mounted along t h e  guard r ing .  

It is done by 

The vacuum system cons i s t s  of a mechanical pump, a d i f f u s i o n  

pump and a t h r e e  -way vacuum valve. 

pumping system and t h e  vacuum chamber is f i t t e d  with vacuum gauges. 

A thermocouple vacuum gauge is used f o r  pressures  between 5 and 1000 

microus Hg, whereas t h e  pressures from 5 micrms t o  10 mm are 

The connection between t h e  

-7 
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covered by an ion iza t ion  gauge. 

and t h e  mechanical pump is measured by a thermocouple vacuum gauge. 

The pressure between the  d i f fus ion  pump 

The instrument console can be seen i n  Fig: 21. On the  console are 

located: t h e  thermocouple potentiometer, wattmeters f o r  t he  hea ters ,  

t he  vacuum gauge cont ro l ,  t he  valves  f o r  cont ro l l ing  flows through 

the  four coolers,  four  va r i acs  f o r  cont ro l l ing  the  hea ters  and cont ro l  

switches for t h e  pumps. 

5.2 Specimen Preparation a n d x a s u r e m e n t  of Surface Parameters 

Specimens a r e  made i n  t h e  form of a one-inch diameter cy l inders ,  

1 .5  inch long. 

lapping machine. 

is obtained by spinning the  specimen on a l a t h e  with t h e  test sur face  

pressed against  a rubber base covered by pol ishing c l o t h  with a t h i n  

l aye r  of a diamond compound spread over it. 

i n  t h i s  manner is recorded on a sur face  analyzer with a bas ic  v e r t i c a l  

s e n s i t i v i t y  of 0.94 pin per mil l imeter  de f l ec t ion  of t h e  Sanborn re- 

corder. With t h e  known waviness, smooth test sur faces  were b las ted  

by t h e  Ba l lo t in i  Division, Po t t e r s  Bros.,Inc., Ca r l s t ad t ,  N . J . ,  with 

g l a s s  spheres of var ious s izes  under d i f f e r e n t  pressures  i n  order  t o  

achieve the  desired roughness. 

Both base sur faces  of each specimen are lapped on a 

On one of t he  lapped bases,  t he  sphe r i ca l  waviness 

The waviness produced 

The surface p r o f i l e s  are recorded on the  su r face  analyzer.  From 

t h e  recorded p ro f i l e s ,  the  mean of the  absolu te  value of s lope  
L 

tan0 = 1 Iy 'ldx is hund graphical ly .  The roo t  mean square of 
L o  

roughness is calculated from the  center l i ne  average va lue  (C.L.A.  : 

r l y l d x ) ,  by assuming the  normal d i s t r i b u t i o n  of t h e  p r o f i l e ' s  

height ,  i.e. u = C . L . A . E .  The app l i ca t ion  of t h e  Chi-square test 
0 
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d i s t r i b u t i o n  of height w a s  

acceptable  f o r  t h i s  type of roughness. 

average is read d i r e c t l y  from the "Talysurf" profilometer.  

5.3 Experimental Procedure 

The value of t h e  center  l i n e  

The apparatus described in sec t ion  5.1, is used for t he  experi- 

mental determination of t he  contact res i s tance .  

Two specimens, with f i t t e d  thermocouples, are al igned by a device 

i n  the  form of a hollow cyl inder(made of t w o  removable halves),  So 

al igned specimens are placed i n  the  chamber and t h e r e  aligned ( a s  one 

u n i t )  r e l a t i v e l y  t o  t h e  chamber devices under a load of about 100 ps i .  

Following t h e  alignment of t he  whole chamber, t h e  cy l inder  which is 

used f o r  t h e  specimens alignment is removed and t h e  chamber closed. 

Simultaneously, the  dead weight is gradual ly  removed and the  vacuum 

of about 5 x mm Hg is a t ta ined .  A t  t h e  minimum pressure (131 psi) 

and a l l  hea ters  turned on, t he  system and t h e  i n t e r f a c e  is  allowed t o  

outgas f o r  about 36 hours. 

After the  outgassing i s  accomplished, t he  hea te r s  and t h e  coolers  

are adjusted t o  give the  desired heat  flow. 

measured every half-hour. 

The temperatures are 

After two i d e n t i c a l  successive readings,  

AL-c +I... -ta-rl.. -t-to h d  heen attained and the reading it Was c ~ p p u d  C u a L  uc-u-7 w - u - -  .--- ----- _ _ _ _ _ _ _ _ _  

w a s  followed by an increase  of the  load. 

A l l  da t a  are taken f o r  t he  ascending load. 

The deformation and the  surface ana lys i s  used in t h i s  work are 

v a l i d  only for t h e  f i r s t  applkation of t h e  load, therefore  the  ascen- 

ding load procedure had t o  b e  used i n  order t o  enable the  comparison 

between t h e  theory and the  experiments. 
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V I  COMPARISON O F  PREDICTED AND EXPERIMENTAL RESULTS 

Discussion of t h e  agreement between t h e  pred ic t ion ,  based on t h e  

thermal, sur face  and deformation analyses  presented i n  the  f i r s t  t h ree  

chapters  of t h i s  work, and t h e  experimental r e s u l t s  obtained here ,  

together  with some found by o the r  i nves t iga to r s ,  w i l l  be t h e  contents  

of t h i s  chapter.  

6.1. Elemental Model i n  a Vacuum Environment- 

The a r t i f i c i a l  specimens (made of d i f f e r e n t  materials and wi th  

var ious  geometries),  which resemble t h e  model of t he  elemental  

heat  channel r e l a t ed  to  a heat  flow through a contac t  spo t ,  are 

t e s t ed  i n  a vacuum environment. The predic t ion  of t he  contac t  

conductance, spec i f ied  by equation (2.14) i s ,  as i t  can be  seen 

from Fig: 23, i n  very good agreement with t h e  experimental r e s u l t s .  

I n  Figs: 24 and 25 w e  presented the  r e s u l t  of t he  comparison 

between t h e  predict ion (from Eq. 2.21) and t h e  experiments f o r  t h e  

contac t  which comprises t h e  condi t ions r e l a t e d  t o  a c y l i n d r i c a l  

waviness. For both t e s t ed  contac ts ,  one of t h e  specimens w a s  a 

s t a i n l e s s  s t e e l  with protruding s t r i p e s ,  whereas t h e  o the r  w a s  made 

of a s o f t e r  mater ia l  with contact ing su r face  

f l a t .  The geometry of t he  contac ts  as w e l l  as t h e  materials involved 

are indicated i n  Figs: 24 and 25. 

and t h e  experiments can be described as s a t i s f a c t o r y .  

6.2 Rough Nominally F l a t  Surfaces i n  a Vacuum Environment 

smooth and nominally 

The agreement between predic t ion  

The predic t ion  of t h e  thermal contac t  conductance ca lcu la ted  from 

r e l a t i o n  (4.2) w a s  compared by t h e  experimental  d a t a  i n  Fig: 18. 

The experimental r e s u l t s  from t h i s  work are t h e  readings obtained 

L 
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Specimen 2 

from t h e  rough sphe r i ca l ly  wavy su r faces  f o r  those va lues  of pressure  

u,-negligible, d2 = 55 pin,tac02 = 0 

f o r  which t h e  contour area is i d e n t i c a l  with t h e  apparent area, i.e. 

when t h e  sur faces  i n  contact behaved l i k e  nominally f l a t  surfaces.  

Specimen 1 

Fig: 18 also conta ins  t h e  experiments from references  [2] and [5]. 

a) = 292 pin,  d, = 80 pin, tanel = 0.100 

A l l  specimens have been made from stainless steel. 

t h e  sur faces  t e s t e d  are l i s t e d  in Fig: 18. 

and H = 375,000 p s i  ( f o r  s t a in -  re ference  [2],  where k = 14.6 

less steel 4161, t h e  values f o r  thermal conductivity are obtained 

from Fig: 33 (supplied from [62]) and hardness f o r  t h e  material con- 

s idered  w a s  H = 370,000 ps i .  

The geometry f o r  

E x c e p t h r  da t a  from 

Btu 
hr f t ° F  

Specimen 2 

It can be seen from Fig: 18 t h a t  f a i r l y  good agreement is obtained 

u 174 pin, d, = 35 pin, tang2 = 0.100 
2 

between t h e  theory and t h e  compared experimental data.  

6.3 Rouph and Wavy Surfaces i n  a Vacuum Environment 

Three p a i r s  of specimens made of stainless steel 305 with rough 

and wavy su r faces  are used in t h e  experiments. The geometry of t h e  

specimens' su r f aces  are l i s t e d  below 

I 
/ P a i r  1 

P a i r  2 

P a i r  3 

I Specimen 1 I al = 190 pin,  d,  = 95 p€n, tang, = 0.150 

Specimen 2 76 pin,  d2 = 0 pin,  tang, = 0.137 

The r e s u l t i n g  u f o r  each p a i r  is given,together with t h e  experi- 

m e n t a l  r e s u l t s ,  i n  Figs: 26, 27 and 28. The t h e o r e t i c a l  p red ic t ion  
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i s  made from r e l a t i o n  4.5. tan0, f o r  each p a i r  is taken t o  be the  

l a rge r  of the  two respec t ive  tan@ 
i 

u E 'etT 1 AH var i e s  with pressure,  but  t he  average one f o r  range of 

pressures  from 131 p s i  t o  t he  pressure which w i l l  e l iminate  the  

e f f e c t  of deviat ion of f l a t n e s s ,  is indicated i n  each f igure .  For 

comparison, the curve corresponding t o  u = 1 (i .e .  when the  contour 

area is assumed t o  be the  same as one obtained by the  Hertz theory 

f o r  smooth surfaces) is presented f o r  each p a i r  of specimens. 

i n  a l l  cases had the value of H = 370,000 p s i ,  Young's modulus of 

e l a s t i c i t y  E = 26 x lo6 p s i  and conductivity da ta  are taken from 

Fig: 33. 

f o r  t he  surfaces  involved. 

Hardness 

For a l l  t h e  th ree  p a i r s  of specimens, t h e  agreement between pre- 

d ic ted  and measured values w a s  good. 

6.4 Contacts i n  a Fluid Environment 

The theory, which is  developed i n  t h i s  work, f o r  pred ic t ion  of 

the  contact  conductance with the  presence of an i n t e r s t i t i a l  f l u i d ,  

is compared t o  some experimental da ta  obtained by Fenech [ l ]  and 

Henry 121. 

I n  Figs: 29 and 30 are given experimental r e s u l t s  and predic t ion  

by the  theor ies  (one presented here  and the  o the r  i n  reference [ l ] )  

f o r  two d i f f e r e n t  geometries of an a r t i f i c i a l  model with a f l u i d  i n  

the  gap. Three types of f l u i d s  are used: a i r ,  water and mercury. 

The agreement w a s  s a t i s f a c t o r y  f o r  a l l  t h e  t h r e e  f l u i d s .  One 

may not ice ,  tha t  the  f l u i d s  with r e l a t i v e l y  low conduct ivi ty  (com- 

pared 

steel AMs 5613), the  pred ic t ion  f o r  t h e  thermal contac t  conductance 

w a s  higher than the  values obtained by experiments. 

with the conductivity of t h e  material of t h e  model: s t a i n l e s s  

This can be 

~ 
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explained by t h e  inf luence of the finite height of t h e  smal l  cy l inder  

which comprised t h e  contact  spot f o r  t h e  specimen experimentally tes ted .  

Since our theory is based on t he  model with  zero height  of t h e  contac t  

spot ,  it gave a somewhat smaller thermal res i s tance .  

For t h e  case of rough nominally f l a t  sur faces  with a f l u i d  i n  t h e  

gaps, t h e  v a l i d i t y  of expression (2.17) w a s  checked aga ins t  t he  

experimental (and theo re t i ca l )  r e s u l t s  obtained i n  reference [l] 

(Fig: 31) and reference [Z] (Fig: 32). 

For the  pred ic t ion  given in  Fig: 31, dependence between I S ,  and 

E: was  taken from t h e  graphical ly  obtained d a t a  i n  reference [l], whereas 

ks f o r  t he  p a r t i c u l a r  combination of materials (Iron/Aluminum) had 

t h e  value ks = Btu 
73*0 hr  f t°F '  

The i n t e r f a c e  parameters f o r  t h e  case considered, i n  Fig: 32 are 

l i s t e d  i n  the  f igure .  

The agreement between t h e  pred ic t ions  and the  experiments w a s  

very  good. 
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V I 1  CONCLUSIONS 

7 .1  Discussion of Results 

The purpose of t h i s ,  pr imari ly  theo re t i ca l  work, w a s  t o  provide 

c e r t a i n  r e l a t i o n s  which can be used t o  pred ic t  t he  thermal contact  

conductance for var ious condi t ions (rough non-wavy sur faces  i n  a vacuum 

environment, rough non-wavy surfaces  i n  a f l u i d  environment, smooth 

wavy  sur faces  i n  a vacuum environment and rough and wavy sur faces  i n  

a vacuum environment). Furthermore, t he  e f f o r t  w a s  made t o  reduce 

the  thermal contact conductance equation t o  t h e  form which can be 

acceptable for p r a c t i c a l  appl icat ion.  It seems t h a t  the  success i n  

t h i s  respect was achieved i n  eome cases, p a r t i c u l a r l y  f o r  rough 

nominally f l a t  surfaces  i n  a vacuum environment (Eq. (4.2)) and, i n  

a somewhat lesser degree f o r  rough nominally f l a t  sur faces  i n  a 

f l u i d  environment. 

s impl ic i ty  is a degree of uncertainty in predic t ion  imposed by the  

adaptat ion of various models and assumptions made i n  t h e  process of 

der iving our re la t ions .  Although the  experiments (Fig: 18), l imi ted  

t o  the  c e r t a i n  pressure range, gave q u i t e  a comfortable agreement, 

w e  do f e e l  compelled t o  d iscuss  l imi t a t ions  and poss ib l e  devia t ions  

of t h e  prediction. 

W e  r e a l i z e  t h a t  t he  p r i c e  paid f o r  t h e  a t t a ined  

S ta r t ing  w i t h  the  model f o r  t he  elemental  heat  channel (  Fig:Za), 

we can say tha t  t he  assumption of neg l ig ib l e  height  of contact  

button is a r e a l i s t i c  one ( jus t i f i ed  by very s m a l l  s l ope  of sur face  

a s p e r i t i e s  normally encountered i n  p rac t i ce ) .  

model, with contact button approximated by a small cy l inder  with a 

f i n i t e  he ight ,  h a s  been proposed i n  re ference  [ l ] .  This  less 

realist ic model, l eads  to  t h e  more complicated conductance equation, 

The only d i f f e r e n t  
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which i n  t u r n  w a s  obtained by sa t i s fy ing  t h e  boundary condi t ions only 

i n  average, and assuming, t h a t  i n  t h e  r e l a t i o n s  f o r  t h e  temperature 

d i s t r i b u t i o n ,  it w a s  s u f f i c i e n t  t o  r e t a i n  only t h e  f i r s t  term of an 

i n f i n i t e  series. 

of t h e  contac t  button approach zero i n  t h e  conductance equation 

developed in  reference [l] ( f o r  t he  vacuum condi t ion) ,  t h e  r e su l t ed  

predic t ion  d id  not  agree with t h e  one obtained i n  t h i s  work.(Although 

i n  t h i s  way t h e  two models have become iden t i ca l . )  

between the  two methods are given i n  Fig: 34.  However ,  w e  should say 

t h a t  a predic t ion  based on the  o r i g i n a l  conductance equation from 

[l] would be better than w a s  indicated by t h e  s i t u a t i o n  observed from 

Fig: 34,  since t h e  resistance due to t h e  f i c t i t i o u s  f i n i t e  height  

of t h e  contact but ton,  when taken i n t o  account, would tend t o  de- 

crease t h e  discrepancy between t h e  two methods. 

As a consequence of these,  when one lets t h e  height 

The comparison 

The assumption concerning the shape of t he  elemental heat channel 

wi th  concentr ic  c i r c u l a r  contact  spot ,  i n  s p i t e  of its a r t i f i c i a l n e s s ,  

( t h e  real contac t ,  of course,  has an i r r e g u l a r  shape) cannot produce 

an essential e r r o r  i n  the  r e s u l t  f o r  t h e  thermal contact  conductance 

p red ic t ion  ( t h i s  can be v e r i f i e d  by comparing t h e  conductance f o r  

two  limiting cases: a cylinder wfth the Cnnren+ric circulsr c~ntsc,  

spot (Fig: 2a) and a rectangular  heat  channel wi th  the  contact  area 

i n  t h e  form of a s t r i p  (Fig: 2b) with the  same contact  area/apparent 

area r a t i o ) .  

s p o t s  are of t h e  same s i z e  and uniformly d i s t r i b u t e d  over t h e  apparent 

area. In our opinion, t h i s  s impl i f i ca t ion  might have se r ious  

consequences on t h e  accura te  predict ion of t h e  contact  conductance. 

The employed model f u r t h e r  assumed that a l l  t h e  contact  
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Especial ly  a t  l i g h t  pressures  

d i f f e r e n t  than our model assumes. 

d i s t r i b u t i o n  might e f f e c t  t h e  pred ic t ion  could be deduced from the  

f a c t  t h a t  such a d i s t r i b u t i o n  has the  same e f f e c t  on the  contact  con- 

ductance as some equivalent type of waviness. I n  Figs: 26, 27 and 28 

w e  compared t h e  p red ic t ions  f o r  rough spher ica l ly  wavy sur faces  and 

f o r  t he  same surfaces  i f  they were without waviness, i.e. i f  t he  

contac ts  were uniformly d i s t r ibu ted  over t h e  whole apparent area. 

The r e s u l t  of t h i s  comparison ind ica tes  t he  poss ib le  s ign i f icance  of 

nonuniform d i s t r ibu t ion  of contacts .  

t he  a c t u a l  s i t u a t i o n  could be q u i t e  

The degree by which nonuniform 

The surface ana lys i s ,  i n  which w e  r e l a t ed  the  number of contac ts  

t o  c ,  is based on probabi l i ty  ana lys i s ,  s t a r t i n g  with the  assumption 

t h a t  t he  surface height is normally d i s t r ibu ted .  Even i f  our assum- 

ptior. were cor rec t ,  and i f  w e  had s u f f i c i e n t  information t o  determine 

the  required s ta t is t ical  proper t ies ,  t h e  r e s u l t  of t he  probabi l i ty  

ana lys i s  would represent ,  a t  bes t ,  only a good approximation. 

Nevertheless, w e  a r e  confident t h a t  f o r  sur faces  l a r g e  enough t o  

qua l i fy  f o r  s ta t is t ical  considerat ion,  t h i s  ana lys i s  w i l l  y i e ld  the  

r e l i a b l e  r e su l t s .  

F ina l ly ,  t he  deformation ana lys i s  provided an estimated dependence 

between area r a t i o  and apparent pressure.  

on the  consideration of a symetric model ( see  Appendix H). 

concluded, as a r e s u l t  of such considerat ion,  t h a t  t he  r e l a t i o n  (4.1) 

could be used f o r  t h e  pressure range w e  had been i n t e r e s t e d  i n  (130 

p s i  t o  15,000 r s i )  with the  known consequence, t h a t  a t  low pressures  

the  a c t u a l  area would be somewhat higher than predic ted  by (4.1) and 

a t  the  high pressures,  i f  w e  used t h e  same hardness va lue  i n  the  en- 

t i re  pressure range, t he  a c t u a l  area would be less than predicted,  

The dependence is  founded 

It w a s  
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due to the work-hardening of materials in contact. 

In view of all the effects discussed above, together with the 

experimental findings (Fig: 18), we can conclude that the prediction 

of the contact conductance obtained from relation (4.2) might be 

somewhat low for low pressures( due to the combined effects of 

nonuniform distribution of contact spots and underestimation of real 

contact area) while at very high pressures the prediction could be 

too high due to the work-hardening effect of the materials engaged 

in the contact. 

The waviness effect has been considered separately for smooth 

surfaces, for three different types of waviness as well as in 

combination with roughness. The latter case has significant practical 

interest, since all surfaces in practice will normally possess some 

type of waviness. On the other hand,this waviness could be irregular 

and very often indeterminable and therefore, any accurate prediction 

of the contact conductance, for these cases, would be impossible. 

However, the consideration of waviness was undertaken here in order 

to provide information concerning the relative importance of the 

waviness effect for surfaces in contact which were, in addition, 

rougn. 

by flatness deviation of the same order as roughness (this particular 

combination is likely to occur for real rough surfaces intended to 

be flat.) 

-- rne waviness cuuui&rsd w i i s  of the +ieiiral type  spzcfffed 

The prediction, which agreed well with the experiments (Figs: 26, 

27 and 28) indiceted that the waviness effect is relatively signifi- 

cant and especially pronounced at low pressures with the tendency to 
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diminish with increasing pressure.  The p a r t i c u l a r  pressure f o r  a given 

p a i r  of surfaces ,  f o r  which the  waviness e f f e c t  w i l l  disappear,  depends 

on the  e l a s t i c  proper t ies ,  f l a t n e s s  devia t ion  and roughness of the  

specimens. 

used a l s o  t o  confirm the  theory f o r  rough non-wavy sur faces ,  f o r  those 

pressures  f o r  which the  waviness w i l l  disappear (due t o  t h e  e las t ic  

deformation of the specimens). 

7.2 Recommendation f o r  Further Research 

The experiments done with wavy rough sur faces  have been 

The broad a rea  of contact  r e s i s t ance  is  s t i l l  l a rge ly  unexplored 

Some top ic s  have been examined mainly experimentally, f o r  example, 

d i r e c t i o n a l  e f f ec t  f o r  d i s s imi l a r  metals i n  contact  (Rogers [241), 

e f f e c t  of cycling of the  appl ied load on t h e  thermal contact  conduc- 

tance (Cordier [ 1 9 ] ) ,  t he  thermal r e s i s t ance  with presence of i n t e r -  

f a c i a l s  f o i l  (Fried [22]), plated surfaces  i n  contact  (Fried [9] and 

Weills and Ryder [ l l ] ) .  Since i n  those areas w e  are s t i l l  without 

any co r re l a t ion  of ava i l ab le  da ta ,  and s t i l l  less without a theory 

which agrees  with experiments, t he  problem of pred ic t ion  of t h e  

contact  res i s tance ,  f o r  these  cases, remains unsolved. 

wish t o  emphasize t h e  s ign i f i cance  of having contact ing sur faces  

plated i n  connection, not  only with an increase  of a c t u a l  contact  

area which can be achieved by p l a t ing  contact ing members wi th  a 

s o f t  metal, but a l s o  from t h e  overlooked aspect  of increasing 

conduct ivi ty  of t h e  l ayer  through which c o n s t r i c t i o n  takes  place.  

It is  obvious from any conductance equation t h a t  t h e  contac t  con- 

We p a r t i c u l a r l y  

fg) ductance is d i r e c t l y  proport ional  t o  t h e  va lue  of ks 

where kl and k2 are respect-ive conduc t iv i t i e s  of t h e  l a y e r s  where 

c 
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t h e  heat flow is not p a r a l l e l .  From t h e  conclusion of Appendix C, 

we saw t h a t  t h e  thickness  of t h i s  l aye r  is approximately equal t o  t h e  

r ad ius  of one elemental heat  channel (=b= (n being the  number 

of contac ts  per  u n i t  area) and hence, f o r  non-wavy sur faces ,  could be 

q u i t e  s m a l l .  From t h e  above i t  follows t h a t  considerable reduction 

i n  t h e  contact  r e s i s t ance  may be achieved by p l a t ing  contact ing 

sur faces  with a material of high conduct ivi ty ,  w e n  i f  i n  t h i s  way 

w e  do not  increase  the  actual contact area. (Notice - from t h e  

expression f o r  ks - t h a t  f o r  good r e s u l t s  both sur faces  should be 

p l a t ed ) .  The conclusion reached above may be generalized by 

r e a l i z i n g  t h a t a y  process o r  treatment which changes t h e  conductivity 

of t h e  materials i n  t h e  immediate v i c i n i t y  of contact ing sur faces ,  

w i l l  have s i g n i f i c a n t  inf luence on t h e  contact  conductance r e s u l t s .  

W e  t h ink  t h a t  t he  above phenomenon deserves c lose r  inves t iga t ion  i n  

f u t u r e  research. 

Further work i n  t h e  area of deformation a n a l y s i s  is needed i n  

order  t o  relate t h e  actual contact  area t o  t h e  pressure i n  the  region 

of very low pressures  where e l a s t i c  deformation of sur face  a s p e r i t i e s  

might be a predominant f ac to r .  

under t h e  condi t ion of a v ibra t ing  load as w e l l  as t h e  p r a c t i c a l l y  

important case of t r ans i en t  conditions i n  t h e i r  var ious forms (con- 

t inuous hea t  f l u x  v a r i a t i o n  and gradual evacuation of t he  i n t e r f a c e  

f l u i d )  as a reas  of f u t u r e  i n t e r e s t .  
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APPENDIX A 

-- CONTACT RESISTANCE FOR A SEMI-INFINITE MEDIUM DUE TO HEAT SUPPLY 
OVER A FINITE CIRCULAR AREA 

A.l The circular area is kept under a constant temperature. 

For a steady state condition, the temperature distribution in 

the semi-infinite medium should satisfy the Laplace differential 

equation 

V ~ T  = o o<r<- - 

The origin of the coordinate system is chosen so that it coincides 

with the center of the circular area through which heat is supplied, 

and the semi-infinke solid is extending in the positive z direction. 

The boundary conditions of the problem are as follows 

T = Tc = constant at z = 0 o<r<a - (A* 2) 

- kg= 0 a t z = O  r>a (A .3 )  

T = 0 (arbitrary) at r = m 

T = O  a t z = -  

where a is the radius of the circular area, and k is thermal conduc- 

tivity of the medium. 

The differential equation (A.l) together with the boundary con- 

dition (A.4) has a solution in the form 

for all values of a between zero and infinity. Hence 
W 

T = I :-azf(a) Jo (ar) da (A. 5 )  

The function f(a) will be determined in such a way as to fulfill the 
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t h e  condi t ions (A.2) and (A.3), and t h i s  can be achieved by making use  

of t h e  following known r e l a t ions  connected with Bessel funct ions (see 

f o r  example 133) or [35]). 
W 1 Jo (a r )  da  = i" o<r<a  - 

0 
1 

m and 1 s i n  

0 

(aa) Jo (a r )  da = 

(A. 6a) 

(A. 6b) 

(A. 7a) 

(A. 7b) 

From the  above it  is evident t h a t ,  by v i r t u e  of (A.6a) and (A.7a) 

t h e  expression y 

' 0  

s a t i s f i e s  (A. l )  and a l l  boundary condi t ions:  (A.21, (A.3) and (A.4) 

2T, Sin(aa) ). (consequently f(a) = - a n 

L e t  Q be the  total  amount of heat t r ans fe r r ed  through the  c i r c u l a r  area 

per  u n i t  time, then from (A.7b) and (A.8) follows 

ra ra 
Q = 1 -k (%)**:nrdr 3T = 4Tck 

I a--r- J b  J O  

The t o t a l  thermal res i s tance  between z = 0 and z = may now be  

wri t ten as 

Tc  - Tm Tc 1 0.25 
(0  

p - s -  

Q Q 4ka 
R =  (A. 10) 

Since the  cross-sect ional  a rea  of t h e  conducting medium is i n f i n i t e ,  

a l l  r e s i s t ance  is e n t i r e l y  due t o  t h e  contac t  res i s tance .  

A.2 H e a t  is supplied a t  a constant rate over t h e  contact ing area 

In s o m e  cases t he  condition over t h e  contact ing c i r c u l a r  area 
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could be d i f f e r e n t  from t h a t  of the  constant temperature, and may i n  

f a c t  approach the  constant heat f l u x  condition ( fo r  example when a base 

of a cy l inder  o r  a w i r e  is pressed o r  welded t o  the  sur face  of a l a r g e  

body). For t h i s  reason the  case of constant heat f l ux  w i l l  be inves- 

t i ga t ed  i n  some d e t a i l  below. 

The temperature d i s t r i b u t i o n  should s a t i s f y  the  d i f f e r e n t i a l  

equation (A.1) with boundary condi t ions given by (A.3),(A.4) and 

(A. 11) 

Q being t h e  t o t a l  amount of heat passing through the  contact ing area 

per  u n i t  time. 

Relat ion (A.5) g ives  t h e  form of t h e  so lu t ion  where f ( a )  may be 

obtained by applying boundary condi t ions (A.ll) and (A.3) t o  the  

so lu t ion  (A.5) and u t i l i z i n g  the  following i n t e g r a l  r e l a t i o n  [33] 

and [351.) 
OD 

(A. 12) 

This  procedure y i e l d s  t o  

2 J 1  (aa)  
f (a)  kna a 

and f u r t h e r  t o  OD 

-az Jo(ar) J (aa) da 

a 
T -  

O 

Since the temperature over t he  contact ing area for t h i s  case is  not  

constant ,  t he  thermal contact  r e s i s t ance  w i l l  be def ined here  with 

respec t  t o  the mean temperature over t h e  area of contac t  ( O j r < a ,  z IC 0) 

i.e. 

(A.13) 
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I -  

' 0  m m 

The above i n t e g r a l  can be evaluated i n  the  f o r m ( s e e  [33],[35]). 

Fina l ly  one may w r i t e  

(A. 14) 

Comparison between (A.10) and (A.14) revea ls  t h a t  t he re  is  no 

b ig  d i f fe rence  (8%) i n  t he  values f o r  t he  thermal r e s i s t ances  f o r  

t h e  two cases considered. Also it is worthwhile t o  no t i ce  t h a t  t h e  

r e s i s t ance  f o r  the case of the constant heat flux is higher than t h a t  

of the  constant temperature. T h i s  is q u i t e  i n  agreement with 

i n t u i t i v e  an t i c ipa t ion  i f  one considers t h e  disturbance of t h e  flow 

l i n e s  ( responsible  f o r  res is tance)  i n  the  two cases. 
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APPENDIX B 

CONTACT RESISTANCE FOR A SEMI-INFINITE CYLINDER I N  A VACUUM 

The temperature d i s t r i b u t i o n  i n  a semi-inf i n i t e  cy l inder  (Fig :2a) 

f o r  t he  case when heat is supplied over t he  c i r c u l a r  area .a2 a t  

z = 0, w i l l  be considered below. 

We seek t h e  so lu t ion  of 

with the  following boundary condi t ions 

T = const a t  z = 0 o<r<a  

z = o  r>a 

- 
- k - =  a T  0 

az 

The l a s t  condition, together  with (B.3) restrict t h e  temperature 

d i s t r i b u t i o n  t o  t he  form 

T = -  z + C Jo(ar) + Co 
knb2 

whereas (B.4) implies  

J l ( a b )  = 0 7 
i.e. ab  = 3.8317; 7.0156: ) 

( B - 7 )  

Hence t h e  problem s t a t e d  by ( B . l )  through (B.5)  has  t h e  so lu t ion  ex- 

p res s ib l e  as 
m 

Where a , . . all, . . can be obtained from (B.7). Cn should be determined 
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by s a t i s f y i n g  (B.2) while Co i n  (B.61, which by v i r t u e  of (B.7), rep- 

r e sen t s  t he  mean temperature over area nb: w a s  taken t o  be zero (as 

t h e  d e f i n i t i o n  of zero temperature t o  be used i n  the f i r s t  s ec t ion  of 

t h i s  Appendix.) 

The mathematical d i f f i c u l t i e s  imposed by t h e  mixed boundary 

condi t ions (B.2) (where over a p a r t  of t h e  area a t  z=O t h e  temperature 

is prescribed and over t he  rest of t he  area, t h e  temperature gradient  

is  spec i f ied)  w i l l  fo rce  us t o  construct  an approximate so lu t ion  

based on t h e  exact temperature d i s t r i b u t i o n  f o r  t he  case of semi-in- 

f i n i t e  medium (given i n  Appendix A). 

Es sen t i a l ly  t h e r e  are three  d i f f e r e n t  methods by which one can 

ob ta in  such approximate solut ion.  Two methods w i l l  be demonstrated 

below, and t h e  appl ica t ion  of t h e  t h i r d  one w i l l  be postponed u n t i l  
, -  

t h e  next Appendix . 
B . l  Temperature grad ien t  over t h e  contact  area is proport ional  t o  - 

It is evident t h a t  t h e  so lu t ion  obtained i n  Appendix A(A.8) 

represents  t h e  spec ia l  case of t h e  problem t r e a t e d  here ,  mainly t h e  

case when b --* m, or more precisely when - - - *  0.  a 
b 

mrthermore,  from &8j ,  i A . Y j ,  ia .6a j  and i a . i b j  foiiows that 

f o r  that case (% + 0), boundary condi t ions 

aT - k - =  0 az a t  2 - 0  r>O J 03-91 

are equivalent  t o  those given by (B.2). 

can be used t o  approximate (B.2) even when i; # 0 w e  may proceed by 

With an assumption that (B.9) 
a 



determining Cn i n  (B.8) 

The above approach could be j u s t i f i e d  by the  following arguments: 

( i )  The purpose of t h i s  ana lys i s  is pr imari ly  t o  obta in  an est imat ion 

f o r  t h e  thermal r e s i s t ance  and not t he  exact temperature d i s t r i -  

but ion in the  cylinder.  To achieve the  former it  is s u f f i c i e n t  

t o  know the  temperature over t he  contacting area. Since here  

w e  w i l l  u s e  t he  mean temperature obtained by in t eg ra t ion  over 

the  mentioned a rea ,  an e r r o r  introduced by the  use  of (B.9) w i l l  

produce a second order  e f f e c t  i n  the  expression f o r  t h e  mean 

temperature ; 

( i i )  I n  an analogous s i t u a t i o n  f o r  t he  two-dimensional case,  it w a s  

found (see Appendix D) t h a t  the  error i n  the  expression f o r  

aT -- Q (a2 - r2)-ll2 ocrca - 
4 

is only of the  order of (t) . az 

Before proceeding fu r the r  with the  so lu t ion ,  w e  w i l l  u t i l i z e  

t h e  i n t e g r a l  r e l a t i o n  ([61) 

s i n  w Jo (w COSO) CosOdO - - - - -  i"' W 

' 0  

I n  order  t o  evaluate the  fol lowing,set  r = a cos0: 

ra ro 
Jo(aa cos0) d0 = 

r Jo(ar )  d r  

= - J 
a cos0 a s in0  

Ja* - r 2  as in0  

(B.10) 

- "I2 

(B. l oa )  s inaa  Jo(aa cos0) cosOd0 = - = a  l o '  a 

Making use o f the  orthogonal p rope r t i e s  of Bessel funct ion and r e l a t i o n s  

(B.8), (B.9) , (B7) and (B.lOa) one can w r i t e  



b2 Q s i n  a,,a 5 J02 (%b) = z r k  a n 

o r  
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ra 

The s u b s t i t u t i o n  of (B. l l )  i n t o  (B.8) y i e l d s  

(B. 11) 

(B.12) 

The value f o r  t h e  mean temperature  over t h e  contact  area follows from 

t h e  above 

‘ 0  

The thermal r e s i s t a n c e  between z = o and z = 11 ( for  large E) is 

spec i f i ed  with 

t h e  contact  r e s i s t a n c e  alone has t h e  form 

W e  write (B.14) as 

$1 
4 R = -  nka 

where 

(B. 14) 

(B. 15) 



with 
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Jl(",b) = 0 

is represented i n  Fig: 5. 

B.2 Solut ion obtained by thege thod  of superposi t ion 

In  order  t o  obtain an approximate so lu t ion  f o r  the  case of 

cyl inder  (Fig:2a) w e  w i l l  consider the  f i e l d  composed of an i n f i n i t e  

number of heat sources equal ly  spaced on the  sur face  z = 0 which 

extends t o  i n f i n i t y  (Fig:4). 

The temperature f i e l d  is given by 
W 

T = C Ti(r,z) 
i= 1 

(B. 16) 

where T i ' s  have the  form of (A.8) and r i n  each T 

d i s tance  between the  point considered and the  p a r t i c u l a r  source which 

represents  t h e  i 

cont r ibu tes  Ti. 

By v i r t u e  of (A.6a), (A.6b) and (A.8) one may conclude t h a t  a t  

z = 0 the  contr ibut ion of each source is Tc over its own source area 

-1  a __ 
51 'i 

and ??c sin elsewhere ( fo r  r i>a ,  where a and ri are measured 

from the  center of t he  source).  

From (A.7a), (A.7b) and (A.9) i t  is evident  t h a t  heat  has been 

t ransfer red  only through each source area and t h e  amount f o r  each 

contact  spot  is given by (A.9) i.e. Q - 4Tcka. 

I n  the  fur ther  inves t iga t ion  the  a t t e n t i o n  w i l l  be focussed on 

a cyl inder  w i t h  adiabate  s i d e s  which sepa ra t e  heat  flow coming from 

one contacting spot.  The t r u e  shape of the  cy l inder  is hexagonal, 

but here  i t  w i l l  be approximated by a c i r c u l a r  shape spec i f i ed  by i ts  

rad ius  b. 

can be expressed by b = (na)-1'2 where n is  t h e  number of contact  

The rad ius  i t s e l f  depends on the  dens i ty  of sources  and 

spo t s  per u n i t  area. 

A t  t h i s  s tage w e  want t o  introduce a mall d ig res s ion  by 
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attempting to prove one significant point - namely that the contact 
resistance may be obtained from the expression 

(B.17) 

i.e. the knowledge of the temperature distribution at z = 0 contains 

all the information we need to solve the problem. 

To reach the above conclusion we start from the exact form for 

the temperature distribution given with (B.8), noticing that it 

consists of the two parts: the linear part which dominates the sol- 

ution for large values of z, and the disturbance part, which has its 

maximum effect at z = 0. The expression can also have a constant 

term which essentially defines the zero reference temperature. 

virtue of (B.7) and (B.8) one may say that this constant would rep- 

resent the mean temperature over rb2 area or in other words - the 

By 

temperature one would get at z = 0 by extrapolating the existing 

linear temperature profile occurring far away from the contact 

surface (or simply taking disturbance part equal zero). 

Then from the definition of the contact resistance one may write 

(B. 17) 

Or proceeding in a more formal way 
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Returning now t o  t h e  problem of determining t h e  thermal resistance 

by the  method of superposit ion,  one can express the  temperature d i s t r i -  

but ion a t  z = 0 f o r  one cyl inder  with ad iaba t i c  s ides  as 

-1  00 

o<r<a  - T = T, + -  2TC c s i n  
ri i-1 

-1 -1 - 2% a 2Tc 00 - - s i n  (;) + - s i n  (%) a<r<b 

n 

(B .18) I r i  i= 1 lr H 

where the  terms summed from i = 1 t o  i = are cont r ibu t ions  due t o  the  

sources outs ide of t h e  area under considerat ion ( r i  being measured from 

the  center  of t he  source i ) .  

Applying (B.17) t o  (B.18) 

-1 
s i n  (3-)dA] (13.19) 

nb2 Jl nb2 r i  

-1  
+ -  2Tc T 15 11 s in  $)dA r - - 

nQ i=1 ma2 

To estimate the value of t he  last term i n  (B.19) w e  w i l l  use  the  

a 
r i  

f a c t  t h a t  - << 1 and hence is permissible t o  w r i t e  

With t h i s  and t h e  r e l a t i o n  Q = 4kaTc it w a s  obtained 

(B. 20)  

where R i  is dis tance between the  cen te r  of t h e  area considered (r=o) and 

the  center  of t he  p a r t i c u l a r  source (Ri = r i  f o r  r = 0 ) .  
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After evaluat ion of t h e  f i r s t  p a r t  of (B.19) and making use of 

(B.20) follows t h e  r e l a t i o n  f o r  the thermal contact  resistance. 

-1 1 

R = -  2ih[$ - s i n  (f) -(:It1 - (:I2] ' 2 -  

b The series ? (-)3 has been ca lcu la ted  f o r  300 nea res t  po in ts  wi th  t h e  
is1 Ri 

r e s u l t  

3 0 0  b 3 b 1 

i=l i 
C (E-) = 1.5 ((-)3 = -) 

R300 5006 

So t h e  f i n i t e  form f o r  t h e  thermal r e s i s t a n c e  may be wr i t t en  as 

(B. 22) 

Where I$~(:) is given in  Fig: 5. 

The last term i n  (B.22) has a l imited inf luence on the  o v e r a l l  r e s u l t  

e.g. 

a 
b f o r  - = 0.1 it cont r ibu tes  1.5% 

a f o r  g = 0.2 3.5% 

Furthermore, (B.22) could be s implif ied giving t h e  good approximation 

uf "R LlGf Q++5 2s 
b 

[n - 4($ (B.22a) 1 R = -  4rka 

B.3 H e a t  is supplied a t  a constant rate per u n i t  of t he  contac t  are_a, 

I n  order  t o  ob ta in  the  upper l i m i t  for t h e  thermal r e s i s t ance ,  as 

w e l l  as f o r  t h e  reasons already s t a t e d  i n  t h e  previous Appendix, w e  

w i l l  f i nd  t h e  s o l u t i o n  f o r  t h e  case of constant  temperature grad ien t  

over t h e  contac t  area. 
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The problem d i f f e r s  from that considered i n  the f irst  sect ion of 

t h i s  Appendix only in  the boundary conditions a t  z = 0, where now, 

instead of (B.9)  we  have 

aT -k - = at z * 0 o<r<a az na2 - 

aT - k - = O  a t  z = 0 a<r<b az 

(B. 23) 

The routine procedure would lead to  t h e  following re lat ion for the thermal 

resistance 

4 4 b m  J1’(anb 
(-) - - - ~  0, (E) = - K = - -  

nka nka a n=l  (anb) 3 J 0 2 ( ~ n b )  
(B.24) 
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APPENDIX c 

CONTACT RESISTANCE FOR A FINITE CIRCULAR CYLINDER I N  A VACUUM 

-- 

In order t o  obtain the  influence of t he  f i n i t e  length of cy l inders  

i n  contact on the  expression f o r  t he  thermal contact  r e s i s t ance ,  t h e  

so lu t ion  obtained i n  Appendix B w i l l  be revised here  by considering a 

cyl inder  l imi ted  with o<r<b and o c z < t  when heat is supplied over a 

concentr ic  c i r c u l a r  area ra2, a'b. 

- -  - -  

C . l  Heat rate over t h e  contact  area is DroDortional t o  (a2-r2)-'/2 

The temperature d i s t r i b u t i o n  is determined by t h e  following 

relations: 

aT -k-= 0 az a t  z = 0 a<r<b 1 
T - TQ = const a t z = t  

Imposing (C.31, (C.4) and (C.5) t o  (C.l) on arrives a t  the  r e l a t i o n  

n- -0 & 
T - T, = c &e sinh[o,(~-z)l  Jo(%r)  

n=o 

where t h e  so lu t ion  of 

J l (ab)  = 0 

w i l l  g ive t h e  values  of (n  = 0,1,2 ....) 
The boundary condition at z - 0 (C.2) can be expressed i n  the  form 

of Faurier-Bessel series as 



From (C.6) follows 

00 -an11 (E) = - c C, an cosh(anll) Jo (ant)  
z=O n-o 

Comparison of (C.8) and (C.9) w i l l  y ie ld  

co = Q. - 9_ s i n  (ana) (C.10) 
nkb2ao aollcoshaoll ’ cn = lrka (%b)2J02(anb) &anllcosh(anll) 

The f i r s t  term f o r  the  temperature d i s t r i b u t i o n  may be obtained r ead i ly  

as 
r- -1 

Q s inh  [ao(ll-z)l 
a, cosh aoll 

a. + o 

The subs t i t u t ion  of (C.10) and (C. l l )  i n t o  (C.6) w i l l  r e s u l t  i n  

From which the  expression f o r  

t o  be 

4 b 1 -  11 R = - (-) T C tanh (anb 7;) 
~b a n=l  

(C.11) 

(C.12) 

the  thermal contact  r e s i s t ance  w a s  found 

a a 
s in(anb J,(a,b 

(C.13) 

C . 2  Heat is supplied over t he  contact  area a t  constant  rate- 

For the  case when the  constant  heat  f l u x  is prescr ibed,  t h e  boundary 

condition (C.2) w i l l  change i n  

(C.14) 
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and t h e  r e l a t i o n  obtained f o r  t h e  thermal contac t  r e s i s t ance  (omitt ing 

t h e  d e t a i l s  of der iva t ion)  may be  wr i t t en  as 

(C.15) 

c.3 BEp l i c a t i o n  of a method of superposi t ion 

I n  the  following w e  w i l l  present t he  p a r t i c u l a r  method of super- 

pos i t i on  which has some t h e o r e t i c a l  value.  

here  has less p r a c t i c a l  va lue  than e i t h e r  (B.14), (B.19) o r  (C.13),  t he  

method deserves a t t e n t i o n  f o r  the elegance of t h e  idea of superposi t ion 

as w e l l  as f o r  t he  f a c t  t h a t  t h e  method i t s e l f  is one of t h e  f i r s t  

treatise on t h e  mixed boundary condi t ions w e  had t o  d e a l  with i n  our 

problem. 

Although the  r e s u l t  obtained 

The method is due t o  Weber (1873)([341,[35]). 

A s  a f i r s t  s t ep ,  t he  i n f i n i t e  p l a t e  (o<re-) with thickness  E - -  
( ~ < ~ e a )  w i l l  be  considered f o r  t he  case when heat is supplied over t h e  

c i r c u l a r  area Fa2 with center a t  r = 0 ,  z = I. 

- -  

The temperature d i s t r i b u t i o n  in the  p l a t e  is defined by 

V2T1 = 0 (C.16) 

and t h e  following boundary conditions 

-k 

-b 

T1 

T1 

aT - =  0 
az 

z = 11 a<r J 

= 0 ( a rb i t r a ry )  a t  z = 0 

P O  r * -  

P O  k- 
aT1 
ar a t r = O  

(C.17) 

(C. 18) 

(C.19) 

(C.20) 

U t i l i z i n g  (A.7a) and (A.7b) one can write the  so lu t ion  i n  t h e  form of 



OD 66. 
s i n h  ( a z )  da 

s in(aa)  Jo (ar) - 
'1 J = ( a x  a 

0 

and a t  z - ll OD 

I -2all 

(C.21) 

From (C.22), (A.6a) and neglect ing terms of 

s in(aa)  Jo(ur)  a da (C.22) 

a 3  order  (x) and up, t h e  

following r e s u l t  has been found f o r  t h e  contact  

1 llog2 R E - -  
4ka 2akII 

The so lu t ion  fo r  a f i n i t e  c i r c u l a r  cy l inder  may 

r e s i s t ance  ([33],[341) 

(C.23) 

be obtained by superim- 

posing t h e  new temperature f i e l d  Tp to  t h e  one found above (C.21). 

temperature d i s t r i b u t i o n  Tp is spec i f ied  by the  following r e l a t i o n s  

The 

V2T2 = 0 (C.24) 

0 0 24) ((2.25) -k -az 

(C. 26) 

(C. 27) 
aT2 
ar k - = 0 a t  r = O  

(C.28) 

Where t h e  above boundary condi t ions - e s p e c i a l l y  (C.28) reveal t h e  na tu re  

of superposit ion.  

Sat isfying (C.25), (C.26) and (C.27) one arrives at 

Tp = ? C, s i n  
n=l  

To implement (C.28) and 

Tl(C.21) i n  the form of 

(C.29) 

thus t o  determine C, i n  (c.29) one has  t o  express  

a series. 



After the introduction of the approximation 

SiUaa 
a 

- -  - a  

(C.21) may be written as 
I" 

' 0  
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(C.30) 

(C. 31) 

for r>o 

where the above transformation has been done by using Cauchy's residue 

theorem (for details see [33] or [35]). 

Notice that (C.31) is not valid for r = o due to the behavior of 

K,,(O),  but since it will be employed only at r - b, the form is still 
useful. 

From (C.29), (C.31) and (C.28) the expression for C, has been 

obtained and after substitution into (C.29) we may write 

rr) (C.32) A F sin(- 2n-1 nz) K (21 2n-1 nb) 

-b) 

2n-1 
211 IO (r 
2n-1 2n-1 T2 = kxEn=, 

sin (- n) I l ( X  2 

Finally 

or 

(C.33) 

b For 



i.e. the  so lu t ion  (C.33) g e t s  t he  form of (C.23) as one should expect. 

The so lu t ion  obtained i n  t h i s  sec t ion  s u f f e r s  from the  l ack  of 

accuracy mainly due t o  the  approximation (C.30). However, i t  is 

poss ib le  t o  improve the  accuracy of t he  method by expressing i n t e g r a l  

(C.21) i n  the  form of an i n f i n i t e  series without introducing (C.30). 

Because of the involvement of t he  procedure and t h e  f a c t  t h a t  w e  

a l ready have a good so lu t ion ,  i t  w i l l  not be done here. 
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APPENDIX D 

CONTACT RESISTANCE FOR A SEMI-INFINITE RECTANGULAR SOLID DUE TO HEAT 
SUPPLY OVER A STRIP 

D . l  Heat is sumlied over the contact area at a constant rate- 

With reference to Fig: 2b, the problem could be stated with the 

following relations 

-k - aT 4, at z = 0 ;  -a<x<a az 2a 

aT -k- = 0 at z = 0; a<x<-a az 

Where Q is heat flux per unit length of the strip. 

The solution of (D.l) which satisfies (D.3) and (D.4) may be 

written as 

From (D.2),(D.5) and the orthogonal property of trigonomerie function 

follows 

0' 

from which 

I 

b 

0 

Qb sin (%) 
%I= 

The temperature field is now defined by 
I 
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The mean temperature over the  contact  area -a<x<a a t  z = 0 can be found 

i n  t h e  form * P 1 sin'(nnT;) a 

ka2n3 n=1 Tm = n2 

The thermal contact r e s i s t ance  per u n i t  length of t h e  contact  s t r i p  may 

be expressed from t h e  above 

R k is presented i n  Fig:4. 

D . 2  Heat r a t e  over t he  contact  area is proport ional  to  (a2-x2)-'/k. 

The problem is defined by the  same r e l a t i o n s  considered i n  t h e  

previous sec t ion ,  except f o r  t h e  boundary condi t ion a t  z = 0, where 

now, instead of ( D . 2 )  w e  have 

(D .  8a) 

a t  z = 0 a<x<-a (D. 8b) aT - k - = O  az 

Relat ion ( D . 8 a )  approximates condi t ion of constant  temperature over t h e  

contact  area. (More about t h i s  w i l l  be sa id  later i n  t h i s  Appendix) 

Expression (D.5) is still va l id  and Cn w i l l  be determined by 

imposing boundary condi t ion ( D . 8  ). 

Since the following is t r u e  

n s i n  w) dw = 5 Jo (aa) 

one may der ive  from ( D . 8  and ( D . 5 )  t h e  following 



or after substitution 

The thermal contact resistance per unit length of the strip has been found 

f rom 

D. 3 

(D.9) to be 

R = - 1 
klr2 

(--) b - 1  C ;;;2 Jo(nT) a sin (nni;> a 

The use of the Schwarz-Christoffel transformation 

From the fact that this Appendix deals with the two dimensional 

steady flow in the region bounded by a polygon, one may conclude that 

it is possible to use Schwarz-christoffel transformation to obtain the 

solution. 

only to justify the statement that boundary condition (D.8a) represents 

very good approximation for the condition of constant temperature over 

In the following we will use the mentioned transformation 

the contact area. 

In Fig: 7a, in the complex *plane which comprises our problem 

(one can easily see the correspondence from Fig: 2b and Fig: 7a). 

We consider heat flow restricted between two parallel planes, namely 

v = 0 and v = b, for the case of a heat source at u - - - and a heat 
sink at u = + -. At u = 0 from v = 0 to v = b-a there is a non-conducting 

partition. 

The above flow may be transformed into the flow in the complex 

s-half plane (Fig;7b) by the use of the following transformation [lo]. 

where 

(D. 11) 
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I After  d i f f e r e n t i a t i o n  of (D.15) and c e r t a i n  rearrangement w e  can write 

The inverse  of ( D . l l )  being 

W'II 9 2  S = [d2 + f 2  tanh2 jj-1 

S-plane can b e  transformed i n t o  <-plane 

s = -  + ' with i t s  inverse 1 - < '  

s - 1  
< = s + 1  

The complex po ten t i a l  f o r  t he  case of a s ink  i n  <-half plane 

(D.12) 

(D.13) 

(D. 14) 

where s t rength  of t he  s ink  is -Q/2 and Q has the  same meaning as i n  

sec t ion  1 and 2. 

By successive subs t i t u t ion  of (D.13) and (D.12) i n t o  (D.141, the  

complex po ten t i a l  fo r the  heat flow described i n  Fig:5a w a s  determined 

t o  be . 
(D. 15) 

From t h e  above follows 

T = R e  [4J(w)l (D. 15a) 

Instead of using (D.15a) f o r  obtaining the  exact  expression f o r  t h e  case 

considered i n  sec t ion  2, w e  w i l l  exp lo i t  (D.15) only f o r  checking the  

r e l i a b i l i t y  of t he  approximation made by (D.8a) i.e. 
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for b>v>b-a. 

Introducing t h e  r e l a t i o n  v = b-x, simplifying and developing corres- 

ponding terms i n  series, one may proceed as shown below: 

(D. 16) 

From expression (D.16) it follows t h a t  i n  order  t o  approximate condi t ion 

T = const.over t h e  contact  a rea ,  t h e  use of (D.8a) is permissible.  
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- APPENDIX E 

- CONTACT RESISTANCE FOR A SEMI-INFINITE RECTANGULAR PARALLELEPIPED 

I n  t h i s  Appendix w e  w i l l  l i m i t  ourselves only t o  t h e  consideration 

of t he  case when hea t  is  supplied a t  constant rates over t h e  contour 

area (Fig : 3b). 

The reasons f o r  t h i s  are as follows 

( i )  The s i t u a t i o n  r e l a t ed  t o  t h e  geometry considered here primarily 

arises i n  connection with heat flow through a contour area. 

Since the  contour area, by d e f i n i t i o n ,  is  t h e  area ins ide  which 

a l l  contact po in ts  are d i s t r i b u t e d ,  t h e  condition over t h e  area 

depends mainly on the  charac te r  of t h i s  d i s t r i b u t i o n .  For t h e  

uniform d i s t r i b u t i o n  through each poin t  passes t h e  same amount 

of heat and consequently it might lead t o  (not completely j u s t i f i e d )  

conclusion that t h e  hea t  f l u x  over t h e  contour area is cons tan t ;  

( i i )  Even i n  the case when t h e  actual s i t u a t i o n  over t h e  contour area 

is d i f f e r e n t  than t h a t  of constant heat f l u x ,  and approaches 

condition of constant temperature, t h e  p red ic t ion  f o r  t h e  thermal 

r e s i s t ance  obtained by e i t h e r  of t h e  methods w i l l  be r e l i a b l e  due 

t o  t h e  very small d i f f e rence  between t h e  r e s u l t s  of t h e  two 

methods (as i t  w a s  evident i n  t h e  previous Appendix). 

With reference t o  Fig: 3b, t he  problem is defined by t h e  following 

r e l a t i o n  : 

V2T = 0 
% 

aT -k(G) = 0 at  z = 0 a<x<-a 
d<y<-d 

(E. 2) 
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03.3) 

aT -k(K)= 0 f o r  y = + - c 

The so lu t ion  of (E.l) which s a t i s f i e s  (E.3),(E.4) and (E.5) is expressible  

as 

U 

aT From (E.6) ( a f t e r  taking and evaluat ing a t  z = 01, (E.2) and t h e  

orthogonal proper t ies  of the  trigonometric funct ion,  i t  follows 

nna nu bc d s in(b)  = k k0 a 2 4ad nn 

- P L a s i n ( % )  =kc,,-- mn bc 
4ad mn c 2  

mu nrr 2 cb Q c b s i n ( c  d)  s i n ( b a )  = k C, dy) + (y) - Y 4ad mn nn 

Q sin(=a) b s i n ( F d )  
kn2ad 

Subs t i tu t ion  of (E.7) i n t o  (E.6) determines t h e  temperature d i s t r i b u t i o n  as 
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J mn z s i n  (- d) cos (F y) 
+ 

-E 
+ & ?e c b 

m-1 m2 

t h e  mean temperature over t he  contour a rea ,  and consequently t h e  thermal 

contact  res i s tance  is immediately obtainable  from t h e  above expression 
I- 

a~ sin2(? a) s i n 2 ( F  mn d)  c c  bc + 
kv4a2d2 n = l  m = l  

n 2 m 2 4 r )  nn 2 + (:12 

It is easy t o  v e r i f v  t h a t  r e l a t i o n  (D.7) found i n  t h e  previous Appendix 

is only spec ia l  case of (E.8) namely f o r  c = d. 

Since i n  practice the  shape of t he  contour area w i l l  be e l l i p t i c  

instead of rectangular one ( a s  i t  w a s  assumed here),we checked poss ib le  

error due t o  such an assumption by comparing contact  r e s i s t ance  f o r  

two cases; f o r  a square bar with t h e  concentr ic  contour area and a cir- 

cu la r  cy l inder  with a concentr ic  c i r c u l a r  contour area. For both cases  

the  cross-sectional area and t h e  r a t i o  between t h e  contour area and t h e  

cross-sectional area w e r e  t h e  same ( f o r  example considered square roo t  

of t he  r a t i o  was equal 0.1); t he  agreement of comparison w a s  s a t i s f ac to ry :  

3.5% discrepancy. 

Based on t h i s ,  w e  might expect t h a t  t h e  app l i ca t ion  of r e l a t i o n  

(E.8) t o  a case when the  contour area has an e l l i p t i c  shape, w i l l  not  

. 

produce subs t an t i a l  e r ro r .  
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APPENDIX F 

-- THERMAL RESISTANCE MIR A CONTACT IN A F L U I D  ENVIRONMENT 

The model adopted f o r  an elementary heat  channel f o r  t he  case t r ea t ed  

here  is given i n  Fig: 3a. Direct contac t  exists over t h e  area .a2 

which is  under a constant  temperature Tc. For r>a a f l u i d  is present  i n  

t h e  gap. 

volume) between the  s o l i d  and isothermal plane spec i f ied  by t h e  tempera- 

W e  denote with 6, t h e  mean d i s t ance  (mean with respec t  t o  

t u r e  Tc (Tc is not  prescribed temperature, i t  s tands  only as an 

abrevia t ion  f o r  a temperature a t  t h e  contact  area). 

Considering only the  s o l i d  (and assuming t h a t  it is permissible  

t o  treat t h e  su r face  a t  z = 0 as a f l a t  surface)  one can seek the  

so lu t ion  f o r  t h e  temperature d i s t r i b u t i o n  from t h e  r e l a t i o n s  given 

i n  Appendix B, namely from (Bel), (Be3),(B.4) and (B.5), whereas, instead 

of (B.2) as the  boundary condition a t  z = 0 w e  now have 

T = const = Tc at z = 0 o<r<a  (F.la) 

(F.lb) 

- 
aT kf (Tc - T) a t  z = 0 a<r<b 

6 - k ( z )  - 

where kf is an equivalent  conductivity of t h e  f l u i d  ( taking i n t o  

account a l l  e f f e c t s  present  i n  the gap). 

The temperature d i s t r i b u t i o n  which is the  so lu t ion  of (B.l) and 

s a t i s f i e s  boundary condi t ions (B.3),(B.4) and (B.5) has t h e  form of (B.8) 

wi th  

Jl(%b) = 0 

where Cn has t o  be determined from fF. l ) .  

We w i l l  continue with our problem of es t imat ing the  thermal contact  

r e s i s t a n c e  f o r  t h i s  case without obtaining t h e  temperature d i s t r i b u t i o n  
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by proceeding as follows. 

F i r s t  we w i l l  no t i ce  t h a t  expression (F.2) together  wi th  (F.3) def ines  

t h e  zero  reference temperature as the  mean temperature over area nb2 a t  

z = u (not ice  t h a t  t he  above conclusion holds regard less  of what w e  would 

g e t  f o r  Cn). Consequently, by v i r t u e  of (B.17) follows t h e  expression 

f o r  t h e  contact res i s tance :  

(F.4) 
TC K = -  
Q 

Furthermore, w e  may write 

o r  

JlTrdr + JlTrdr = o a t  z = o 

PTrdr  = - - Tca2 
2 

J a  

N e x t  w e  d ivide t h e  to ta l  amount of heat  passing through t h e  sur face  

z = 0 i n  t h e  two par t s :  

where Q1 stands f o r  t he  amount passing through t h e  s o l i d  contac t  area ma2 

and ‘2 represents  t h e  amount t r ans fe r r ed  through t h e  f l u i d .  

From (F.€b) and (F.5) one can express 0, as 

b 

r d r  = 2a kf 1 (Tc - T) r d r  = 6 
a 

b2-a2 = 2n [Tc 2 
+ Tc  j- 

1 

The expression f o r  t h e  thermal r e s i s t a n c e  ( ~ . 4 )  now acqu i re s  a new form 

1 R =  + kf 
,,b2 

Q1 + Q2 Q1’Tc 
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In order  t o  estimate the  value of ol/,c w e  w i l l  consider,  see Fig;3b, 

t h e  body of revolu t ion  spec i f ied  by t h e  s t reamline e-f which separa tes  

t h e  pa r t  of t h e  cy l inder  through which flows amount of heat Q1. Far 

away from su r face  z = 0, where t h e  s t reaml ines  are p a r a l l e l ,  one can 

relate t h e  d i s t ance  of t h e  s t reamline e-f from t h e  axis of t h e  cyl inder ,  

bl  t o  t h e  r ad ius  of t h e  cyl inder  b, by using (F.6) as 

Approximating t h e  body of revolut ion,  which confines t h e  amount of hear 

Q1, with t h e  cy l inder  of r ad ius  b l ,  t r e a t i n g  t h e  lat ter as i n  a vacuum 

( s ince  t h e  s t reamline e-f f o r  the body of revolu t ion  reprrasents t h e  

ad iaba t i c  w a l l ) ,  and using the  r e s u l t s  of Appendix B, one 3y write 

(frpm (B.14) and ( B.19)) 

F r w  (F.8) and (F.9) it follows 

(F.lO) 

(F.lO) i m p l i c i t l y  determines A .  Due t o  t h e  l i n e a r  charac te r  of 

a one can so lve  (in the  range 0 2 ~  Xe0.6) - e x p l i c i t l y  f o r  A .  So l i n e a r i z i n g  

$I by using (B.22a) (F.lO) changes t o  

From which 

A =  

where 

m l l  

(F . l l )  



Knowing A, t h e  expression f o r  thermal contact  r e s i s t ance  follows from 

(F.7) and (F.9) a s  

(F. 12) 

To make (F.12) more use fu l  for p r a c t i c a l  appl ica t ions ,  w e  w i l l  

consider two cyl inders  i n  contact  with a f l u i d  i n  the  gap (Fig:3a). 

L e t  t he  respec t ive  thermal conduct iv i t ies  of t h e  two materials 

be denoted with k, and k,. 

X 1  = A2 = A( = TI. As a consequence of t h e  above, from (F . l l )  follows 

m = m i.e. 

From (F.8) i t  is obvious t h a t  

b 

1 2’  

6 lkl  = *,k, (F.13) 

Relation (F.13) s p e c i f i e s  t h e  pos i t ion  of t he  isothermal plane Tc i n  

the  gap. 

L e t  2klk2 

kl  +k2 
ks E - and 6 E 6, + 6, 

then from (F.13) 

6kS 6,kl 6,k, = - 2 (F. 13a) 

Hence one can obta in  from (F . l l )  X without knowing separa te ly  6, o r  6, 

as 

(F.14) 

The t o t a l  contact r e s i s t ance ,  f o r  t he  two cy l inde r s  toge ther ,  may be 

wr i t t en  now as 

R - R1 + R, = nkla 
1 1 

+ - nb2 kf 
+ nk2a 

+ - nb2 
kf 

441(tA) 61 44@ 62 

c 



c 

. 
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with 

, t h e  r e l a t i o n  f o r  R, s impl i f i e s  i n t o  
6kS 6kS 61 = -  

2ki 2k2 
and 62 3 - 

The thermal contact  conductance per u n i t  area can be found from (F.15) 

as 

(F.16) 

(F.16) now is i n  t h e  form s u i t a b l e  f o r  d i r e c t  app l i ca t ion  s ince  one 

determined X from (F.14),4 from Fig: 3(or from t h e  l i nea r i zed  form: 

a II A a  lp(gh) = 16 - -2; (TI) and b from t he  r e l a t i o n  rb2 = $ , where n is the  

number of contact  po in ts  per un i t  of t h e  contour area. 

hc f o r  vacuum condi t ions is only t h e  s p e c i a l  case of (F.16) when 

kf = 0 and h = 1. 

Of course,  
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APPENDIX G -- -~ . 
-- ESTIMATION OF MEAN PRESSURE OVER CONTACT AREA - 

I n  order t o  es t imate  t h e  mean pressure over t h e  contact  area w e  

w i l l  consider a model which cons i s t s  of two rough, nominally f l a t  

surfaces  made of the  same material with Poison’s r a t i o  IJ = 0.3. 

The i r r e g u l a r i t i e s  on t h e  surfaces  are approximated by spher ica l  caps. 

Furthermore, i t  w i l l  be assumed t h a t  f o r  each point  of contact  w e  have 

two spher ica l ly  shaped asperities with t h e  same radius  of curvature  

R i n  symetric contact  (Fig: 19a). 

After  the moment when two a s p e r i t i e s  j u s t  touch each o the r ,  any 

r e l a t i v e  approach between t h e  two a s p e r i t i e s  of AC w i l l  produce, 

by the  Hertz theory [48] , the  normal force  

and the area of contact 

AC R .a2 = TI - 2 

where E represents  Young’s modulus of e l a s t i c i t y ,  and R the  rad ius  of 

curvature. Relations (G.l) and (6.2) are applkable provided t h a t  

p l a s t i c  flow did not occur. 

pressure over the contact area reaches the  va lue  of 1 . 1 Y 0 ,  i.e. 

I f  AC is l a rge  enough so t h a t  t h e  mean 

Pm = 1.1Yo 

the  e l a s t i c  l i m i t  w i l l  be j u s t  exceeded a t  t h e  poin t  z = 0.5a due t o  

the  shear stress a t  t h a t  point  ([471). (z is measured from t h e  center  

of the  contact  i n  the  normal d i r ec t ion ) .  Yo is t h e  i n i t i a l  elastic 

l i m i t  of t he  mater ia l  found i n  pure tension. 

When the  mean pressure reaches the  va lue  of approximately  YO, 

the  whole region of contact  is flowing p l a s t i c a l l y .  Theore t ica l ly  
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increase -n AC w i l l  not  change the  

mean pressure over t h e  contact  area. The above conclusion is subjec t  

t o  l i m i t a t i o n  ([47]) i f  t h e  deformed area is comparable with the  s i z e  

of t he  specimens and i f  t h e r e  is work-hardening of t h e  material during 

t h e  contact.  

Based on t h e  above known r e l a t i o n ,  namely: (6.1) and (6.2) f o r  

elastic deformation, t he  mean pressure f o r  which onset of p l a s t i c i t y  

w i l l  occur, t he  behavior of t h e  material when t h e  f u l l  p l a s t i c  flow 

is reached, together  with some r e l a t i o n s  from t h e  sur face  ana lys i s ,  

one may estimate the  mean pressure over the  contact  area. 

From (6.1) and ( 6 . 2 )  it  follows 

The rad ius  of curvature  R can be approximated with 

h 

2 tan20 
R =  

where h being the  height of t h e  a s p e r i t y  and tan0 t h e  mean absolu te  

s lope  of t h e  sur face  p r o f i l e  (defined i n  Ch.111). Subs t i tu t ion  of R 

i n  (6.3) and rearrangement w i l l  y i e l d  

2 

lrSn 1 
AC - =  0.467 (- 
h tan0E 

AC t h e  va lue  of (hIY - f o r  which the  material w i l l  j u s t  s tar t  t o  flaw 

p l a s t i c a l l y ,  could be found from (6.4) by s e t t i n g  Pm = 1.1Yo. 

t h e  d a t a  f o r  s t a i n l e s s  steel (303) f o r  7 (= 4.4 x and taking 

tan0 = 0.1 (that has been t h e  minimum value w e  d e a l t  with) it w a s  

Using 

Yo 

obtained 

(fly - 1.1 x 
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Considering now our model, w e  can conclude t h a t  i f  a t  a c e r t a i n  

s tage  w e  had n - number of contac ts  p e r  u n i t  area, then a f t e r  approaching 

the  two surfaces  c lose r  by (AC), a l l  n contac ts  would experience p l a s t i c  

flow and only new contact  po in ts  obtained i n  the  process of approaching 

would be i n  e l a s t i c  state. 

From Ch.111 (Eq. 3.9 ) t he  following r e l a t i o n  holds 
-I 

where C is a constant,  y ,  the  d is tance  between the  mean planes of t he  

two sur faces  i n  contact ,  and a is the  standard devia t ion  f o r  the  

joined d i s t r i b u t i o n  ( 0  = m). 
I f  one goes from y1 t o  y2 then as a consequence of the  above, the  

percentage of the  new contac ts  can be determined form t h e  expression, 

“2 

I f  w e  

( i . e .  

( i .e .  

A c  l / 2 ,  0.02 choose for  our i n i t i a l  pos i t ion  t h e  one f o r  which E. = (-1 
A a  

- -  A‘ - 0.0004), and fu r the r  estimate h by a s se r t ing  
A a  

assuming t h a t  the  sum of the  he ights  of t h e  two a s p e r i t i e s  j u s t  

touching each other  is equal,  i n  average, to t he  d i s t ance  betweenthe 

mean planes) ,  then a f t e r  using Fig:lO t o  obta in  y1la ,  ( G . 6 )  w i l l  r evea l  

t h a t  a t  t h e  end of t he  approach (AC) 

i n  e l a s t i c  state. Furthermore, the  approach of (AC), w i l l  produce the  

t o t a l  increase of the  contact  a rea  of 17% (from Fig:lO), which together  

with the  percentage of the  new contac ts  a l lows US t o  conclude t h a t  not 

more than 0.85% of the  t o t a l  area i n  contact  belongs t o  t h e  new contacts .  

For i n i t i a l  E is g rea t e r  than t h a t  used here ,  t h e  percentage of 

only 5% of a l l  contac ts  w i l l  be Y 
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the  area f o r  which t h e  mean pressure is  less than 1.1Yo w i l l  be still 

less due t o  t h e  smaller (y/a) and t h e  slower increase  of t h e  contact  

area f o r  t he  same increment of ( T ) ~ .  AC 

The immediate conclusion from t h e  above ana lys i s  would be, that 

f o r  t h e  cases w e  are in t e re s t ed  in ,  t he  amount of t h e  contact  area 

with t h e  mean pressure l e s s  than 1.1Yo - t h e  value uhich w i l l  produce 

onset  of p l a s t i c i t y  - is negl igibly small. Although t h i s  information 

is s i g n i f i c a n t  i t  still does not  t e l l  us  more about t he  va lue  of t he  

mean pressure than that it lies somewhere between 1.1Yoand 3Yo. 

To achieve somewhat c lose r  estimation than the  previous one, w e  

w i l l  proceed by making an assumption t h a t  t he  v a l i d i t y  of r e l a t i o n s  

(G.l) and (6.2) may be extended u n t i l  t he  whole region of contact  

starts t o  flow p l a s t i c a l l y ,  i.e. u n t i l  Pm = 3Yo. (Notice t h a t  although 

t h e  assumption can be considered q u i t e  crude, s ince  when the  onset of 

p l a s t i c i t y  occurs, both force  F and t h e  contact  area w i l l  increase  

f a s t e r  with an increase i n  AC than (G.l) and (6.2) p red ic t ,  w e  use 

t h e  above r e l a t i o n s  only i n  the  form of t he  r a t i o  (6.3) and hence, the  

o v e r a l l  e f f e c t  of t h e  inaccuracy w i l l  be smaller) .  

Se t t ing  Pm = 3Y0 i n  (6.4) we obta in  

(&) = 8.2 x lo-' 
h P  

Simi la r ly  as before,  i f  w e  move the  two sur faces  c lose r  f o r  (AC) only 

t h e  new contac ts  w i l l  have the  mean pressure less than 3 YO. 
P 

Proceeding exac t ly  as i n  t h e  previous case, s t a r t i n g  with E - 0.02 

it w a s  obtained that a t  t h e  end of t h e  approach of (AC) 

of t h e  t o t a l  contact  area had t h e  mean pressure less than 3Yo. 

Since,  as it w a s  found earlier, the  amount of t h e  contact area with 

less than 9% 
P' 

t h e  pressure  less than l . l Y o  is negl ig ib le ,  we  may assume t h a t  t h e  whole 
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9% of t h e  contact  area i s  a t  t h e  pressure between l . l Y o  and 3Y0. 

t h e  purpose of ca l cu la t ion  w e  w i l l  t ake  t h e  mean pressure f o r  t h i s  

por t ion  of the contzct  area t o  be 2Y0. 

For 

L e t  Ap stand f o r  t h e  p a r t  of t h e  contact  area f o r  which t h e  

mean pressure is equal 3Y0; A, - t h e  whole contact  area, then w e  

may w r i t e  

I?, = Yo (2 + h) 
A, 

For t h e  

where p 

In  

example we considered 

Pm = 2.915 Yo 

o r  

o r  

is apparent pressure and Aap - t he  apparent area. 

the  case when E > 0.02 t h e  mean pressure  ca lcu la ted  i n  the  above 

manner would be c lose r  t o  t h e v a l u e  of 3Y0. 

It is not d i f f i c u l t  t o  change our  r a t h e r  a r t i f i c i a l  model (of two 

i d e n t i c a l  surfaces  i n  contact)  t o  more of a rea l i s t ic  one, cons is t ing  

of t h e  two surfaces  with d i f f e r e n t  c h a r a c t e r i s t i c s  and made of 

d i f f e r e n t  materials. 

For t h e  la t ter  case, t h e  only modif icat ion i n  expressions (G.1)  

(G.2) and (G.3) would be 

and 2E1E2 

E1+E2 

2R1R2 hl 

R1+R2 - 2 

h2 

E = E s =  - 

R 5 R S =  - p hl(tan 02)2 +( tan  0 )2 

. 
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or taking, i n  average 

h1 - - *l and h, i h, = y - 
h2 02 

where y l ,  a l ,  a, and tan0 are already introduced i n  t h i s  Appendix. 

One can proceed f u r t h e r  s imi l a r ly  as i n  t h e  former case, using 

t h e  value f o r  Yo of the  s o f t e r  material. 

obtained would depend on t h e  p a r t i c u l a r  combination of t he  sur faces ,  

but e s s e n t i a l l y  it should not d i f f e r  considerably from t h e  one a l ready  

ca lcu la ted .  

The numerical r e s u l t  so 
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APPENDIX H 

EFFECTIVE CONTOUR AREA FOR SPHERICALLY WAVY ROUGH SURFACES I N  CONTACT 

Considering a sphe r i ca l ly  shaped body with an  i d e a l l y  smooth sur face  

pressed on a r i g i d  smooth plane (Fig:19c) one can obta in  from t h e  

Hertz theory 1371 t he  following r e l a t i o n s  f r an the  displacement of t h e  

sur face  i n  the z d i r e c t i o n  due t o  t h e  l o c a l  deformation 

and 

1 D2 
w(r) = 2R (T - r2) r<D/2 

-1 D 

sin '%ID7 
w ( r )  = (r - r2sin2Y) dY = lo 

(H. la)  

(H.lb) 

where R is the r ad ius  of curvature  and D/2 is  t h e  r ad ius  of contact .  

The vertical d is tance  between t h e  su r face  of t h e  body and t h e  

D r i g i d  plane fo r  r> and << 1 may be found from (H.lb) as R 

In  t h e  case of when t w o  bodies wi th  sphe r i ca l  waviness of t h e  type 

shown i n  Fig: 19C are pressed together ,  t h e  vertical d i s t ance  between 

smooth sur faces  beyond t h e  contac t  area (- > r >  7) can be expressed, 

by using (H.2) i n  t h e  form 

L D 
2 

A where g ( / A H  ) is  given graphica l ly  i n  Fig: 20, 
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- 2r  A = - *  d t  f dl + d2 and L ’  

where p i s  an apparent pressure given as 

p = 4 F / w ~ 2  ami E, = 2E1E2 

E1+E2 

Extending now our a t t e n t i o n  to t h e  case of wavy rough sur faces  i n  

contact ,  w e  w i l l  consider a model which can be obtained from the  previous 

one by superimposing roughness on t h e  smooth wavy sur face  (which w e  

w i l l  call t h e  mean surface) .  It w i l l  be f u r t h e r  assumed that under t h e  

contact  pressure,  t he  mean surface w i l l  be deformed i n  the  same manner 

as t h e  smooth sur face  

it w i l l  be assumed that t h e  r e l a t i o n s  (€€.la) and (H.lb) are specifying 

considered a t  t h e  beginning of t h e  s ec t ion ,  i,e. 

t h e  deformation of t h e  mean surface.  Consequently, t h e  mean sur faces  

of two rough sur faces  i n  contact f o r  o<r< /L w i l l  be p a r a l l e l  and at  D - -  
a relative d i s t ance  Y, where Y is a funct ion of characteristics of 

t h e  sur faces  and t h e  applied load, 

D L m e a n  sur faces  f o r  - <rL - is being now [ 6 ( r )  + Y]. 2 -  2 

The v e r t i c a l  d i s tance  between the  

The contac t  po in ts  w i l l  be spread not only over t h e  area lrD2/4 

( spec i f ied  by (H4))  but a l s o  beyond t h a t  area. 

between t h e  mean sur faces  w i l l  increase  with an increase of r f o r  

Since t h e  d i s t ance  

r>D/2,  t h e  dens i ty  of contact  points  w i l l  decrease with an increase  

of r. 

The number of contact  points  per u n i t  area f o r  o<r<D/Z is given - -  
(from Eq. 3.9) with 

-Y2/,2 
n - c e  (%Sa) 



90. 
D L and f o r  - 2 

The e f f e c t i v e  rad ius  of t h e  contour area has been defined here by the  

r e l a t i o n  : 

D/2 

Which states t h a t  i f  t h e  e f f e c t i v e  area had t h e  uniform dens i ty  

i t  would contain a l l  the  contact  points .  

From (H. 61, (H.5a) and (H. 5b) one can obta in  

1 - - 6 (2 :+:, 0 e XdX 

Together with ( H . 3 ) ,  (H.7) can be w r i t t e n  as 
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0 1  TEMPERATURE DISTRIBUTION 

CONTOUR AREA 

b )  CONTOUR AREA (FOR CASE OF SPHERICAL WAVINESS) 

FIG. 1 DEFINITIONS 



a )  MODEL OF A CONTACT 

b )  MACROSCOPIC HEAT CHANNEL FOR CYLINDRICAL 
WAVINESS IN ONE DIRECTIONS 

c )  MACROSCOPIC HEAT CHANNEL FOR CYLINDRICAL 
WAVINESS I N  T W O  DIRECTIONS 

F I G . 2  M O D E L S  FOR H E A T  CHANNELS 
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a )  HEAT FLOW BETWEEN TWO PARALLEL PLANES 
WITH CONSTRUCTION OF FLOW AT U = O  

-1 - 
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I b )  REPRESENTATION OF STEP FUNCTION 
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